

AspectJ in Action

AspectJ in Action
PRACTICAL ASPECT-ORIENTED

PROGRAMMING

RAMNIVAS LADDAD

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books they publish printed on acid-free paper, and we exert our best efforts to that
end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-93-6

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 05 04 03 02

 To my late grandfather, Jodhrajji.
You were always there for me.

brief contents

PART 1 UNDERSTANDING AOP AND ASPECTJ.............................1

1 ■ Introduction to AOP 3

2 ■ Introducing AspectJ 32

3 ■ AspectJ: syntax basics 64

4 ■ Advanced AspectJ 100

PART 2 BASIC APPLICATIONS OF ASPECTJ................................143

5 ■ Monitoring techniques: logging, tracing,
and profiling 145

6 ■ Policy enforcement: system wide contracts 178

7 ■ Optimization: pooling and caching 202

PART 3 ADVANCED APPLICATIONS OF ASPECTJ......................243

8 ■ Design patterns and idioms 245

9 ■ Implementing thread safety 286

10 ■ Authentication and authorization 323
vii

viii BRIEF CONTENTS
11 ■ Transaction management 356

12 ■ Implementing business rules 391

13 ■ The next step 425

A ■ The AspectJ compiler 438

B ■ Understanding Ant integration 447

■ resources 455

■ index 461

contents

preface xvii

how real is AspectJ? xix

into the future! xxi

acknowledgments xxiii

about this book xxv

PART 1 UNDERSTANDING AOP AND ASPECTJ........................... 1

1 Introduction to AOP 3
1.1 The architect’s dilemma 5

1.2 Evolution of programming methodologies 6

1.3 Managing system concerns 7
Identifying system concerns 8 ■ A one-dimensional
solution 10 ■ It’s all about modularizing 11

1.4 Implementing crosscutting concerns in
nonmodularized systems 14
Symptoms of nonmodularization 15 ■ Implications of
nonmodularization 18 ■ Introducing AOP 19
A bit of history 20 ■ The AOP methodology 21
ix

x CONTENTS
1.5 Anatomy of an AOP language 22
The AOP language specification 23 ■ The AOP language
implementation 24 ■ A weaving example 26

1.6 Benefits of AOP 27
1.7 Myths and realities of AOP 29
1.8 Summary 30

2 Introducing AspectJ 32
2.1 AspectJ: a bird’s eye view 33

Crosscutting in AspectJ 33 ■ Crosscutting elements 34
2.2 AspectJ Hello World 37
2.3 AspectJ: under the hood 40
2.4 The join point model 43

Exposed join point categories 44 ■ Join point
demonstration example 50

2.5 Aspects 55
2.6 AspectJ logistics overview 59

The AspectJ compiler 59 ■ AspectJ browser 60
IDE integration 61

2.7 Summary 62

3 AspectJ: syntax basics 64
3.1 Pointcuts 65

Wildcards and pointcut operators 67 ■ Signature
syntax 68 ■ Implementing pointcuts 73

3.2 Advice 81
Anatomy of advice 82 ■ The before advice 83 ■ The after
advice 83 ■ The around advice 85 ■ Comparing advice with
methods 86 ■ Passing context from a join point to advice 87
Returning a value from around advice 89 ■ An example using
around advice: failure handling 90 ■ Context collection
example: caching 92

3.3 Static crosscutting 95
Member introduction 95 ■ Modifying the class hierarchy 96
Introducing compile-time errors and warning 97

3.4 Tips and tricks 98
3.5 Summary 99

CONTENTS xi
4 Advanced AspectJ 100
4.1 Accessing join point information via reflection 101

The reflective API 103 ■ Using reflective APIs 106
4.2 Aspect precedence 111

Ordering of advice 114 ■ Explicit aspect precedence 115
Aspect inheritance and precedence 117 ■ Ordering of advice
in a single aspect 119 ■ Aspect precedence and member
introduction 120

4.3 Aspect association 122
Default association 123 ■ Per-object association 125
Per-control-flow association 128 ■ Implicit limiting
of join points 132 ■ Comparing object association with
member introduction 134 ■ Accessing aspect instances 135

4.4 Exception softening 136
4.5 Privileged aspects 139
4.6 Summary 141

PART 2 BASIC APPLICATIONS OF ASPECTJ............................. 143

5 Monitoring techniques: logging, tracing, and
profiling 145

5.1 Why use AspectJ for logging? 146
A simple case in point 147 ■ Logging the conventional
way 149 ■ Logging the aspect-oriented way 153

5.2 What’s wrong with conventional logging 154
5.3 The beauty of AspectJ-based logging 156
5.4 Developing logging and tracing aspects 156

Method call tracing 157 ■ Exceptions logging 163
5.5 Common logging idioms 167

Logging the method parameters 168 ■ Indenting the log
statements 170 ■ Aspect precedence 172 ■ Changing the
underlying logging mechanism 173 ■ Using logging in a
multithreaded environment 173

5.6 Extending logging for other usage 174
Testing 174 ■ Profiling 175

5.7 Summary 176

xii CONTENTS
6 Policy enforcement: system wide contracts 178
6.1 AspectJ-based policy enforcement overview 179
6.2 The current solution and its challenges 181
6.3 Enforcement using AspectJ 182

Policy enforcement implementation choices 183 ■ The role of
policy enforcement during the product lifecycle 184

6.4 Policy enforcement patterns 185
Detecting the violation of a specific call pattern 185
Implementing flexible access control 187 ■ Enforcing the
best-practices principles 189

6.5 Example: implementing EJB programming
restrictions 191
Implementing “no AWT” 193 ■ Implementing “no nonfinal
static field access” 194

6.6 Example: implementing Swing policies 195
Understanding the problem 196 ■ Detecting the violation 198

6.7 Summary 200

7 Optimization: pooling and caching 202
7.1 The typical case 203

Return, reuse, recycle: The role of resource
pooling 205 ■ Resource pooling issues 206

7.2 Diving into the pool using AspectJ 208
Designing a template aspect 208 ■ Implementing the
template aspect 209

7.3 Example 1: database connection pooling 211
Understanding the database connection pool interface 212
AspectJ-based database connection pooling 213
Implementing the connection pool 216 ■ Testing our
solution 218 ■ Tweaking the solution 222

7.4 Example 2: thread pooling 223
The echo server 224 ■ Understanding the thread pool
interface 226 ■ AspectJ-based thread pooling 226
Implementing the thread pool 230 ■ Testing our
solution 231 ■ Tweaking the solution 234

CONTENTS xiii
7.5 Extending pooling concepts to caching 235
AspectJ-based caching: the first version 237 ■ AspectJ-based
caching: the second version 239 ■ Ideas for further
improvements 240

7.6 Summary 241

PART 3 ADVANCED APPLICATIONS OF ASPECTJ 243

8 Design patterns and idioms 245
8.1 The worker object creation pattern 247

The current solution 248 ■ An overview of the worker object
creation pattern 249 ■ The pattern template 249
A summary of the worker object creation pattern 256

8.2 The wormhole pattern 256
The current solution 257 ■ An overview of the wormhole
pattern 257 ■ The pattern template 258 ■ A summary
of the wormhole pattern 260

8.3 The exception introduction pattern 260
The current solution 261 ■ An overview of the exception
introduction pattern 265 ■ The pattern template 265
A summary of the exception introduction pattern 269

8.4 The participant pattern 270
Current solutions 271 ■ An overview of the participant
pattern 273 ■ The pattern template 274 ■ A summary
of the participant pattern 276

8.5 Idioms 277
Avoiding infinite recursion 277 ■ Nullifying advice 279
Providing empty pointcut definitions 280 ■ Providing a default
interface implementation 281

8.6 Summary 285

9 Implementing thread safety 286
9.1 Swing’s single-thread rule 287

The rule 288 ■ The problem 288 ■ The solution 289
9.2 A test problem 290
9.3 Solution: the conventional way 293

xiv CONTENTS
9.4 Solution: the AspectJ way 297
The first version 298 ■ The second version 303
The third version 307

9.5 Improving the solution 311
Dealing with exceptions 311 ■ Avoiding the overhead 312

9.6 Improving the responsiveness of UI applications 313
9.7 Modularizing the read-write lock pattern 316

Implementation: the conventional way 316
Implementation: the AspectJ way 318

9.8 Summary 321

10 Authentication and authorization 323
10.1 Problem overview 324
10.2 A simple banking example 325
10.3 Authentication: the conventional way 329

Implementing the solution 329 ■ Testing the solution 331
10.4 Authentication: the AspectJ way 333

Developing the solution 333 ■ Testing the solution 336
10.5 Authorization: the conventional way 336

Understanding JAAS-based authorization 337 ■ Developing the
solution 338 ■ Testing the solution 342 ■ Issues with the
conventional solution 345

10.6 Authorization: the AspectJ way 346
Developing the solution 346 ■ Testing the solution 350

10.7 Fine-tuning the solution 353
Using multiple subaspects 353 ■ Separating authentication
and authorization 354

10.8 Summary 354

11 Transaction management 356
11.1 Example: a banking system with persistence 358

Implementing the core concern 358
Setting up the test scenario 362

11.2 The conventional solution 364
Using the same connection object 365 ■ Committing at
the top level only 367

CONTENTS xv
11.3 Developing a simple AspectJ-based solution 368
Implementing the JDBC transaction aspect 368 ■ Handling
legacy system issues 373 ■ Enabling transaction management for
the banking system 374 ■ Testing the solution 375

11.4 Improving the solution 378
Using the participant pattern 379 ■ Implementing the
JDBC transaction aspect: the second version 382
Testing the solution 385

11.5 Using AspectJ with advanced
transaction-management systems 387

11.6 Summary 390

12 Implementing business rules 391
12.1 Using business rules in enterprise applications 392
12.2 An overview of business rule implementation 393
12.3 Current mechanisms 393
12.4 Introducing a solution using AspectJ 394

The template 394
12.5 Example: the banking system 396

Implementing the core business logic 396 ■ Implementing the
first business rule 401 ■ Implementing the second business
rule 403 ■ Writing a test program 406

12.6 Implementing business rules with a rule engine 411
An overview of the rule engine 412 ■ Using a rule
engine 412 ■ Modularizing with AspectJ 415

12.7 Example: a banking system with a rule engine 417
A brief overview of Jess (Java Expert System Shell) 417
Specifying rules 418 ■ Understanding the rule
invocation aspect 420

12.8 Summary 423

13 The next step 425
13.1 Applying AspectJ to new problems 426

Talking the talk 426 ■ Walking the walk 427

xvi CONTENTS
13.2 Employing AspectJ in development phases 427
AspectJ in the design phase 428 ■ AspectJ in the implementation
phase 428 ■ AspectJ in the testing phase 431 ■ AspectJ in the
maintenance phase 432 ■ AspectJ in legacy projects 432

13.3 A word of warning 433
13.4 Evangelizing AspectJ 434
13.5 Parting thoughts 436

A The AspectJ compiler 438
A.1 Downloading and setting up 439
A.2 An overview of the compiler 440
A.3 Compiling source files 441
A.4 Compiling source directories 441
A.5 Weaving into JAR files 442
A.6 Creating aspect libraries 443
A.7 Using aspect libraries 444
A.8 Utilizing incremental compilation mode 444
A.9 Producing useful warnings 446

B Understanding Ant integration 447
B.1 Compiling source files using an Ant task 448
B.2 Weaving into JAR files using an Ant task 451
B.3 Creating aspect libraries using an Ant task 452
B.4 Utilizing aspect libraries using an Ant task 453
B.5 Utilizing incremental compilation using an Ant task 453

resources 455
index 461

preface
I’ve always felt that implementing a software system is much harder than it
needs to be. It is difficult to map requirements to the implementation and
then trace the implementation back to the requirements. Although many
approaches—such as object-oriented programming, component-oriented pro-
gramming, and design patterns—help to some extent, none of them satisfac-
torily addresses the system-level requirements, often referred to as crosscutting
concerns, that must be included in multiple modules.

 I came across AspectJ version 0.3 in 1998 while looking for better ways to
architect a Java-based system. AspectJ was an implementation of aspect-ori-
ented programming (AOP), a new methodology that specifically targeted the
management of crosscutting concerns. Even though AspectJ was in its infancy,
I became fascinated by its potential. The struggle to keep up with all the new
advances in the Java and XML world, along with other priorities in my life,
prevented me from pursuing it further. Still, exploring AspectJ was always on
my to-do list, and I started looking at it again when it was in version 0.8. By
then, AspectJ had evolved into a much more powerful language. I started
using AspectJ and found that the more I used it, the more I fell in love with it.
Today, the current version of AspectJ (1.1)—which this book is based on—has
morphed into a mature, robust language.

 In early 2002, I wrote a series of articles for JavaWorld describing AOP and
AspectJ; the book you are holding grew out of that series. From reader
responses, I realized that most developers understand that AspectJ can be
xvii

xviii PREFACE
used to modularize the crosscutting concern of logging, but they struggle to
imagine how it may be applied beyond that. Logging, while an important con-
cern, is not something developers lose sleep over. Logging using AspectJ, there-
fore, is best characterized as a vitamin and not a painkiller; while vitamins are
important, often the need for them is not pressing enough to require immediate
action. To further complicate the situation, the examples of AOP that are widely
available today either repeat the same logging problem or are too abstract to be
of immediate practical value.

 My mission statement for this book is “to be a key element in bringing AOP
and AspectJ into everyday practice.” To accomplish this goal, the book not only
presents the AspectJ language but also provides practical AspectJ-based solutions
to a wide variety of real-world problems. You will find that you can utilize these
solutions to quickly reap the benefits of the language. I have tried to use current
technologies as the basis for these solutions so that you can readily apply them to
your system. This also demonstrates that these latest technologies by themselves
are not enough to manage crosscutting concerns, since combined with AspectJ,
they provide a better solution. The book also presents a few original design pat-
terns that increase the power of AspectJ significantly.

 It is not often that one gets to write about such an exciting new programming
methodology and language. I enjoyed writing this book. I hope you will enjoy
reading it.

how real is AspectJ?
Can you use AOP and AspectJ today and on real projects? The answer is yes.
People are using AspectJ in real projects for enhancing middleware platforms,
monitoring and improving performance, adding security to existing applica-
tions, and implementing Enterprise Application Integration (EAI). All these
projects have seen impressive results in reducing both the amount of code and
the time required to create the products.

 AOP is becoming an increasingly popular programming methodology;
you can find implementations of AOP for many modern languages. For the
Java language, AspectJ is the implementation that has the largest commu-
nity acceptance. AspectJ is a popular choice for several good reasons. One of
its strengths is, and always has been, its pragmatic approach to language
design. Instead of allowing the language to get bogged down in theory,
AspectJ’s developers started with basic AOP support and added new features
only after people in the field had discussed their practical use extensively.
The result was the creation of a simple language that was powerful enough
to solve real problems. Another real strength of AspectJ is the tool support
that is so crucial to every developer. Let’s face it—not many of us write code
that runs perfectly the first time, and debugging is an activity on which we
spend a good portion of our working life. Since AspectJ is integrated with
IDEs such as Eclipse, NetBeans, JBuilder, and Emacs JDEE, you can debug it
just like a plain Java program using breakpoints, expression evaluation, and
similar techniques.
xix

xx HOW REAL IS ASPECTJ?
 The recently released version of AspectJ (1.1) has the required maturity that
the language and tools need to make it possible to work with large projects. It
also features a compiler based on the industry-strength Java compiler that is a
part of the Eclipse IDE and used by thousands of projects worldwide. With
AspectJ 1.1, it is possible to create closed-source third-party libraries, paving the
way for commercial vendors to produce prewritten aspects. AspectJ is now an
open source project under eclipse.org. While it always was an open source
project, the eclipse.org infrastructure makes it easier for us to participate in the
development of the tool. Moreover, with the widespread acceptance of the
Eclipse IDE, it sure can’t hurt to be associated with a wildly successful project!

 Here are ways you can start benefiting from AspectJ right now based on
examples in this book. You can bring modularized implementation of resource
pooling, thread safety, transaction management, authentication, and authoriza-
tion to your system just by composing Plain Old Java Objects (POJOs) with “plain
old Java services,” such as servlets, Java Authentication and Authorization Ser-
vice (JAAS), and Java Transaction API (JTA). If you are using EJB, which manages
many of these concerns, you can still enhance your system by implementing log-
ging and modularizing business rules with AspectJ. Everyone, including those
using EJB, can use AspectJ for policy enforcement to ensure correct implementa-
tion of applications and avoid costly errors.

 So, as you can see, AspectJ is for real! The best way to realize the benefit for
yourself is to start using it. Once you do, you will be surprised by its power and
versatility, and you will find it to be very programmer-friendly.

into the future!
AOP and AspectJ’s influence on software development has just begun. It is
going to have an impact on virtually every kind of programming: enterprise
applications, desktop clients, real-time systems, and embedded systems.

 The examples in this book will give you a preview of how AOP will change
the landscape of the enterprise application arena. Currently, EJB is the most
common infrastructure technology used to implement an enterprise system.
The strength of the EJB specification is in the way it separates the system-level
services (such as persistence, transaction management, and authorization) from
the application-specific business logic. The weakness of EJB lies in its complex-
ity and the way it ties all the services—some of which you may not need—into
one offering: the application server. Further, if you do not like the performance
of a service, you have to make hard choices. You may implement the service
yourself—in the process mixing the business code with crosscutting logic—or
you can replace the current application server with a new one. And we all know
how much fun such a replacement is, despite the existence of the standard!

 With an AOP-based solution, you will be able to combine various modules,
called aspects, to create a system that provides just the services you need—no
less, no more. You can then individually fine-tune each aspect or even replace
it without adversely affecting the other parts of the system. The potential that
AOP offers to build your own application server from configurable compo-
nents, potentially from different vendors, is a far superior alternative in creat-
ing a long-lasting and maintainable enterprise system. I expect that the open
xxi

xxii INTO THE FUTURE!
source community will contribute prewritten aspects that will eventually evolve
into a cohesive library. This library will form a foundation on which we can build
systems that could replace EJB and similar technologies.

 AOP and AspectJ will have an impact on nonenterprise applications as well.
The client-side desktop applications will benefit from the clean design and reus-
ability offered by AOP and AspectJ. Implementing concerns such as optimization
and thread safety will be a simple matter of including prebuilt aspects. Further,
efforts are already under way to apply AspectJ in real-time and embedded sys-
tems to realize crosscutting concerns, such as memory management and concur-
rency control.

 Of course, this won’t happen overnight; AOP is still new and as with any new
methodology, it will take time to be assimilated into the programming commu-
nity. As this happens, AspectJ will gain widespread acceptance as the powerful
language it really is. One thing is for sure—AspectJ’s future is bright!

acknowledgments
Although only one name appears on the cover, many people helped behind the
scenes. I am humbled by all the support I received in making this book a reality.

 Many thanks to the AspectJ team—Gregor Kiczales, Erik Hilsdale, Jim
Hugunin, Mik Kersten, and Wes Isberg—for making this book possible by cre-
ating such a powerful language and its implementation, replying to email
queries, and quickly fixing the reported bugs. A special thanks goes to Mik
Kersten for helping with the screenshots.

 My sincerest thanks go to Jackie Carter for helping to revise the manu-
script. Her technical background and quick grasp of concepts, along with her
attention to detail and eye for simplicity and consistency, made this book easy
to read and understand. Jackie, you are the best!

 Many thanks to Manning’s publisher, Marjan Bace, for his commitment to
making this a quality book. Marjan’s relentless effort in understanding the
technology and providing a different perspective on the topic led to many
improvements in the book. I’d also like to thank Mary Piergies for managing
the production and quickly answering all my queries; Liz Welch for cheerfully
going through multiple iterations of copyediting; Tiffany Taylor for meticu-
lously weeding out many hard-to-spot errors during proofreading; and all the
helpful people at Manning: Ted Kennedy, Helen Trimes, Denis Dalinnik, Hal
Fulton, Lori Piquet, Chris Hillman, Leslie Haimes, Syd Brown, Lee Fitz-
patrick, and Susan Capparelle. Also, I’d like to thank Alex Garrett for getting
xxiii

xxiv ACKNOWLEDGMENTS
this project started, and Lianna Wlasiuk and Kelly Kwiatkowski for assisting with
the initial round of editing.

 Thanks to the reviewers, who provided extremely useful feedback that also
led to many improvements: Jean Baltus (who served as the technical editor as
well), Chris Bartling, Henry Choi, Vlad Ender, Awais Rashid, Arno Schmidmeier,
Robert Wenner, and Alan Cameron Wills. All the remaining errors, of course, are
mine. Thanks to TheServerSide.com for holding a public review and to the
many reviewers, especially Ron Bodkin, Jonathan Cates, Chris Nelson, Jean
Safar, and Keith Webster, who gave me useful feedback on chapters posted there.

 I’d like to send a big thank-you to all my colleagues at Real-Time Innovations
for their support and encouragement.

 Thanks go to my family for their love and support over all these years.
Thanks to my late father, Ramvallabh, for instilling me with honesty and ethics;
my mother, Suraj, for always loving me so much; and my brother, Ramprakash,
and sister, Jayashri, for providing the support that I can always count on. Many
thanks to my sister-in-law, Vijaya; my brother-in-law, Kamalkishor; my nephew,
Prashant; and my nieces, Rakhi and Gauri, for their encouragement. I’d espe-
cially like to thank my nephew Ashish for always caring about the book’s progress
and wishing me the best.

 Finally, a special thanks goes to my wife, Kavita, who took care of all the fam-
ily chores, reviewed the manuscript, and created the illustrations for the book—
never complaining about my many broken promises to spend more time with the
family. Thanks also to my three-year old son, Shadaj, for accepting that Papa
needed to work on the book and could not always play with him—and grabbing
me to play once in a while anyway—exactly when I needed to take a break. Look-
ing at your smiling face makes all this effort worthwhile.

about this book
AspectJ in Action is a practical guide to applying AspectJ to real-world
problems. I cover a broad spectrum of solutions—from simple examples
that address logging and tracing, to complex ones dealing with transac-
tions and security. Regardless of your area of expertise, you are bound to
find several examples that you can adapt to the challenges you face in
your work.

 AspectJ in Action is aimed at intermediate to advanced Java developers. Read-
ers with a background in designing and building large systems will also find a
good part of this book useful. While knowledge of object-oriented program-
ming is desirable, I do not assume that you are familiar with aspect-oriented
programming or AspectJ. For special topics, I provide sufficient background
material and cite resources (both text and online) for those who want to gain an
in-depth understanding.

Roadmap

This book is divided into three parts. If you are new to AOP and AspectJ, you
should first read part 1 followed by at least a couple of chapters in part 2. Within
part 3, you can read chapters in any sequence. If you find that one of the sections
specifically addresses your current problem, start using the techniques I present,
learn from the experience, and go from there. You can also choose to study all
the other chapters and apply hybrid techniques to suit your current needs.
xxv

xxvi ABOUT THIS BOOK
 Most chapters in parts 2 and 3 follow a pattern of presenting a conventional
solution followed by an AspectJ solution that implements the identical function-
ality. This pattern provides better understanding of the problem domain, and
comparing the two solutions shows the effectiveness of AspectJ.

Part 1 introduces the aspect-oriented programming methodology and the
AspectJ language.

 Chapter 1 introduces the problems aspect-oriented programming aims to
address and explains how it handles them. We discuss the concern decomposi-
tion of a system, the classification of concerns, and issues with current imple-
mentations of crosscutting concerns. We then show how AOP helps modularize
those concerns.

 Chapter 2 introduces the AspectJ programming language. We discuss the vari-
ous language concepts and constructs. The join point model presented in this
chapter is the most fundamental concept in AspectJ. We finish the chapter by
briefly showing the IDE support for AspectJ.

 Chapter 3 gets into the details of the AspectJ language by examining the
concepts of pointcuts, advice, the introduction mechanism, and so forth.
This chapter provides you with enough information to start writing simple
AspectJ programs.

 Chapter 4 shows the advanced concepts in AspectJ that you need to under-
stand before you start writing nontrivial AspectJ programs.

Part 2 examines the real-world application of AspectJ using simple constructs.
 Chapter 5 introduces logging and monitoring using AspectJ. We show how

AspectJ includes logging in a system without touching any of its core modules.
You’ll also see the ease with which you can switch between different logging APIs.

 Chapter 6 shows how to enforce system wide contracts through policy-enforcement
aspects. We offer a few simple examples that serve as building blocks. Then we
describe an implementation of a UI application and EJB policy enforcement.

 Chapter 7 examines how AspectJ can modularize the optimization concerns of
pooling and caching. We study a generic template and utilize it to address the
concrete challenges of JDBC connection and thread pooling. We finish the chap-
ter with a caching example.

Part 3 examines the advanced application of AspectJ. You must have a good
understanding of AspectJ before reading this part of the book.

 Chapter 8 introduces a few brand-new AspectJ patterns. We also show a few
idioms to avoid certain common pitfalls. Some of these patterns are original con-

ABOUT THIS BOOK xxvii
tributions from the author. This chapter is required reading before you tackle
any of the remaining chapters in part 3, because all of the chapters use one or
more of the patterns we present.

 Chapter 9 addresses the modularization of thread safety using AspectJ. We
specifically address two problems: the thread safety of Swing applications and
the read-write lock pattern.

 Chapter 10 examines the use of AspectJ for authentication and authorization.
We utilize JAAS to implement the underlying authentication and authorization
functionality and use AspectJ to achieve modularization.

 Chapter 11 explains how AspectJ can separate the transaction concern from
the core concern. We examine a JDBC-based as well as a JTA-based transaction.

 Chapter 12 shows a novel application of AspectJ—we utilize it to modularize
business rule implementations. We discuss AspectJ-based solutions that use plain
Java as well as a rule engine (Jess) that evaluates the business rules.

 Chapter 13 rounds out the book by showing a pragmatic approach to adopt-
ing AspectJ.

The two appendices explain, in detail, how to use the AspectJ compiler and
AspectJ/Ant integration. In “Resources,” you will find a wealth of information,
both text and online, related to AspectJ.

Packages and tools used

The examples in this book use the following external tools and packages. The
number in parentheses indicates the version I used for testing—a newer compat-
ible version of these packages should work as well. I will attempt to provide
updated source code that you can download from the book’s source code down-
load site (see the “Source code” section) whenever significantly newer versions of
the packages are released:

■ JDK 1.4 (1.4.1_01)—http://java.sun.com/j2se
■ AspectJ 1.1 (1.1.0)—http://www.eclipse.org/aspectj
■ log4j 1.2 (1.2)—http://jakarta.apache.org/log4j
■ J2EE SDK 1.3 (1.3.1)—http://java.sun.com/j2ee
■ Doug Lea’s Concurrency library (1.3.2)—http://gee.cs.oswego.edu/dl/classes/

EDU/oswego/cs/dl/util/concurrent/intro.html
■ Jess 6.1 (6.1p2)—http://herzberg.ca.sandia.gov/jess/
■ Ant (1.5.1)—http://ant.apache.org/

http://java.sun.com/j2se
http://www.eclipse.org/aspectj
http://jakarta.apache.org/log4j
http://java.sun.com/j2ee
http://gee.cs.oswego.edu/dl/classes/
http://herzberg.ca.sandia.gov/jess/
http://ant.apache.org/

xxviii ABOUT THIS BOOK
Source code

The source code for the example applications in this book is freely available from
Manning’s web site, http://www.manning.com/laddad. Much of the source code is
reusable either in its original state or after some customization. The download
package contains the source code, instructions on how to obtain the required
external packages and set up the test environment, and scripts that automate
compiling and running the programs.

Typographical conventions

■ Italic typeface is used to introduce new terms.
■ Courier typeface is used to denote code samples as well as program elements.
■ Courier bold typeface is used to denote code of special interest.
■ Code-line continuations are indicated by .

Author Online

The purchase of AspectJ in Action includes free access to a private web forum run
by Manning Publications, where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to http://www.man-
ning.com/laddad. This page provides information on how to get on the forum
once you are registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialogue between individual readers and between readers and the author
can take place. It is not a commitment to any specific amount of participation on
the part of the author, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the author some challenging questions lest
his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.

About the author

Ramnivas Laddad is a Sun Certified Architect of Java Technology. He has worked
with object-oriented systems for over a decade and with aspect-oriented program-

➥

http://www.manning.com/laddad
http://www.manning.com/laddad

ABOUT THIS BOOK xxix
ming for the past three years. He is the author of several articles and papers and
co-author of Professional Java XML (Wrox Press, 2001). His series of articles on AOP
and AspectJ was published in JavaWorld. He lives in Sunnyvale, California. Ramni-
vas can be reached by email at ramnivas@yahoo.com.

About the title

By combining introductions, overviews, and how-to examples, the In Action
books are designed to help learning and remembering. According to research in
cognitive science the things people remember are things they discover during
self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, retelling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively
exploring them. Humans learn in action. An essential part of an In Action guide is
that it is example-driven. It encourages the reader to try things out, to play with
new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just
when they want it. They need books that aid them in action. The books in this
series are designed for such readers.

About the cover

The figure on the cover of AspectJ in Action is an “Ysleno Moluco,” an inhabitant
of the Molucan Islands, also known as the Spice Islands, a southwestern province
of Indonesia. The illustration is taken from a Spanish compendium of regional
dress customs first published in Madrid in 1799.

 The title page of the Spanish compendium states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo
desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy
util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

xxx ABOUT THIS BOOK
General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who col-
ored this illustration by hand, the “exactitude” of their execution is evident in
this drawing. The “Ysleno Moluco” is just one of many figures in this colorful
collection. Their diversity speaks vividly of the uniqueness and individuality of
the world’s towns and regions just 200 years ago. This was a time when the dress
codes of two regions separated by a few dozen miles identified people uniquely
as belonging to one or the other. The collection brings to life a sense of isolation
and distance of that period—and of every other historic period except our own
hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life of
two centuries ago‚ brought back to life by the pictures from this collection.

Part 1

Understanding AOP
and AspectJ

Part 1 of this book introduces aspect-oriented programming (AOP) and the
AspectJ language. We discuss the need for a new programming methodology
and the way this methodology is realized in AspectJ.

 Because AOP is a new methodology, we devote the first chapter to intro-
ducing it: why it is needed, and what its core concepts are. The remaining
chapters—2 through 4—describe the AspectJ language. First, we present an
overview of the language and its concepts, followed by a detailed look at the
basic syntax. In chapter 4, we examine the advanced constructs.

 You’ll find the material in part 1 useful as a reference while reading the rest
of the book. If you are new to AOP and AspectJ, we strongly recommend that
you read this part first.

1Introduction to AOP
This chapter covers
■ Understanding crosscutting concerns
■ Modularizing crosscutting concerns using AOP
■ Understanding AOP languages
■ Debunking myths about AOP
3

4 CHAPTER 1
Introduction to AOP
Imagine you are an architect designing a house. Your primary concerns involve
making good choices for the core features of the house: the design of the founda-
tion, the height of the walls, the pitch of the roof, the location and size of the
rooms, and so on. Your secondary concerns are the features shared by many of the
core elements, such as the electrical wiring and plumbing. Now envision that you
are designing a bridge. While the primary concerns are different—the piers,
trusses, beams, and cables, for example—the secondary concerns still include system-
wide features such as the electrical wiring.

 Software design proceeds in a similar fashion. A software architect, when
asked to design something new, first addresses the primary core functionality,
which in a business application is the basic business logic. In a banking applica-
tion, for instance, core modules are designed to manage the banking transac-
tions that each customer makes. In a retail application, the core modules deal
with the purchases and inventory management. In both applications, the system-
wide concerns involve such features as logging, authorization, persistence, and
other elements common to many of the core business modules.

 Let’s look at another software example. If the architect is designing a
robotics application, the core concerns are the motion management and path
computation. The concerns that are common to many of the core modules
involve features such as logging, remote management, and path optimization.
These system-wide concerns that span multiple modules are called crosscut-
ting concerns. Aspect-oriented programming (AOP) manages these crosscut-
ting concerns.

 While object-oriented programming (OOP) is the most common methodol-
ogy employed today to manage core concerns, it is not sufficient for many cross-
cutting concerns, especially in complex applications. As you will see in this
chapter, a typical OOP implementation creates a coupling between the core and
crosscutting concerns that is undesirable, since the addition of new crosscutting
features and even certain modifications to the existing crosscutting functionality
require modifying the relevant core modules.

 AOP is a new methodology that provides separation of crosscutting concerns
by introducing a new unit of modularization—an aspect—that crosscuts other
modules. With AOP you implement crosscutting concerns in aspects instead of
fusing them in the core modules. An aspect weaver, which is a compiler-like entity,
composes the final system by combining the core and crosscutting modules
through a process called weaving. The result is that AOP modularizes the cross-
cutting concerns in a clear-cut fashion, yielding a system architecture that is eas-
ier to design, implement, and maintain.

The architect’s dilemma 5
 In this opening chapter, we examine the fundamentals of AOP, the problems
it addresses, and why you need to know about it.

1.1 The architect’s dilemma

Perhaps the most commonly asked question in today’s software engineering is,
How much design is too much? Good system architecture considers present and
potential future requirements. Failing to take into account the potential future
requirements of a crosscutting nature may eventually require changing many parts
of the system or perhaps even reimplementing them. On the other hand, includ-
ing low-probability requirements may lead to an overdesigned, hard-to-understand,
bloated system. There is a demand to create well-designed systems that can meet
future needs without compromising quality. Then again, inability to predict the
future and time-to-market pressure simply suggests going with what you need
today. Further, since requirements are going to change anyway, why bother consid-
ering them? I call this underdesign/overdesign issue the architect’s dilemma.

 Understanding the architect’s dilemma is crucial in understanding the need
for AOP. Otherwise, developers will be likely to wonder, “Couldn’t you just have
satisfied this requirement by better utilizing the design techniques we currently
use?” or “Isn’t AOP just patching up bad or inadequate design?” The answer to
both questions is no.

 Think of your last couple of projects. Ideas about how you could have
designed it differently are obvious in hindsight. The question is, could you have
made those choices with the information you had then? Although in theory the
concerns could have been addressed with foresight, even if only partially, in real
life it just doesn’t work that way.

 For example, should an architect consider performance-related requirements
in the beginning phases of a project? The usual approach is to build the system,
profile it, and retrofit it with optimizations to improve performance. This
approach calls for potentially changing many parts of the system using profiling.
Further, over time, new bottlenecks may need to be addressed due to changes in
usage patterns. The architects of reusable libraries have an even more difficult
task because it is a lot harder to imagine all the usage scenarios of a library.
Today’s fast-changing technology makes it even more difficult since technological
changes may make certain design decisions useless. Table 1.1 enumerates the
forces on an architect that are at the root of the architect’s dilemma.

 When software projects turn out to be insufficient for future business require-
ments, it is common to blame the problem on the design decisions. However,

6 CHAPTER 1
Introduction to AOP
what is often believed to be insufficient design effort or design shortcomings
may be simply a limitation of the design methodologies used and the language
implementation. With current design and implementation techniques, there is a
limit to what we can do to produce a system that satisfies the current and poten-
tial future requirements in a balanced way, and even that limit may not be
acceptable when considering the ever-increasing pressure on time-to-market and
quality requirements of feature-rich products.

 The architect’s dilemma, then, is the perennial problem of achieving balance
throughout the software process; you are always aiming for that balance, though
you know you can never achieve it. With AOP, as you shall see shortly, you can do
better. Throughout this book, you will see many examples of the architect’s
dilemma and how (and why) AOP is the best available method of addressing it.

 One point needs to be made explicitly clear: AOP is not an antidote for bad or
insufficient design. In fact, it is very tough to implement crosscutting concerns in
a poorly designed core system. You will still need to create a solid core architec-
ture using traditional design methodologies, such as OOP. What AOP offers is not
a completely new design process, but an additional means that allows the archi-
tect to address future potential requirements without breaking the core system
architecture, and to spend less time on crosscutting concerns during the initial
design phase, since they can be woven into the system as they are required with-
out compromising the original design.

1.2 Evolution of programming methodologies

From machine-level languages to procedural programming to OOP, software
engineering has come a long way; we now deal with the problems at a much
higher level than we did a few decades back. We no longer worry about the
machine instructions but rather view a system as a symbiosis of the collaborating
objects. However, even with the current methodologies there is a significant gap
between knowing the system goals and implementing them. The current meth-
odologies make initial design and implementation complex and evolution hard

Table 1.1 Forces behind the architect’s dilemma

Benefits of Underdesign Benefits of Overdesign

Reduced short-term development cost Better long-term system manageability

Reduced design bloat Easy to accommodate new requirements

Reduced time-to-market Improved long-term product quality

Managing system concerns 7
to manage. This is ironic given the world we live in, which demands a faster
implementation cycle and where the only constant is change.

 In the evolutionary view of programming methodology, procedural program-
ming introduced functional abstraction, OOP introduced object abstraction, and
now AOP introduces concern abstraction. Currently, OOP is the methodology of
choice for most new software development projects. OOP’s strength lies in mod-
eling common behavior. However, as we will see shortly and as you may have
already experienced, it does not do as good a job in addressing behaviors that
span many, often unrelated, modules. AOP fills this void.

1.3 Managing system concerns

A concern is a specific requirement or consideration that must be addressed in
order to satisfy the overall system goal. A software system is the realization of a set
of concerns. A banking system, for instance, is a realization of the following con-
cerns: customer and account management, interest computation, interbanking
transactions, ATM transactions, persistence of all entities, authorization of access
to various services, statement generation, customer care, and so on. In addition
to system concerns, a software project needs to address process concerns, such as
comprehensibility, maintainability, traceability, and ease of evolution.

 As we saw in the examples at the beginning of this chapter, a concern can be
classified into one of two categories: core concerns capture the central functional-
ity of a module, and crosscutting concerns capture system-level, peripheral
requirements that cross multiple modules. A typical enterprise application may
need to address crosscutting concerns, such as authentication, logging, resource
pooling, administration, performance, storage management, data persistence,
security, multithread safety, transaction integrity, error checking, and policy
enforcement, to name just a few. All of these concerns crosscut several subsystems.
For example, the logging concern affects every significant module in the system,
the authorization concern affects every module with access control requirements,
and the storage-management concern affects every stateful business object. Fig-
ure 1.1 shows how these concerns often interact in a typical application.

 This figure shows how the implementation modules in a system each
address both system-level and business concerns. This view portrays a system as
a composition of multiple concerns that become tangled together by the cur-
rent implementation techniques; therefore the independence of concerns can-
not be maintained.

8 CHAPTER 1
Introduction to AOP
1.3.1 Identifying system concerns

By identifying the core and crosscutting concerns of a system, we can focus on
each individual concern separately and reduce the overall complexity of design
and implementation. In order to do this, the first step is to decompose the set of
requirements by separating them into concerns. Figure 1.2 uses the analogy of a
light beam passing through a prism to illustrate the process of decomposing the
requirements into a set of concerns. We pass a light beam of requirements
through a concern identifier prism and we see each concern separated out.
While each requirement initially appears to be a single unit, by applying the con-
cern identification process, we can separate out the individual core and crosscut-
ting concerns that are needed to fulfill the requirement.

 Another way of viewing the decomposition of the concerns in a system is to
imagine that you are projecting them onto a concern space, which is an N-
dimensional space, with each concern forming a dimension in it. Figure 1.3
shows a three-dimensional concern space with the business logic core concern

Figure 1.1 Viewing a system as a composition of multiple concerns. Each
implementation module addresses some element from each of the concerns the system
needs to address.

Managing system concerns 9
and the persistence and logging crosscutting concerns as the dimensions. The
significance of this kind of system view is it shows us that each concern in this
multidimensional space is mutually independent and therefore can evolve without

Figure 1.2 Prism/light-beam analogy for concern decomposition. While the requirement
initially appears as a single requirement, after passing it through the concern
identification mechanism, you can see the constituent concerns separated out.

Figure 1.3
Concern decomposition: a
multidimensional view depicting
concern decomposition. The
orthogonality of concerns is
shown by mapping independent
concerns to their own axis.

10 CHAPTER 1
Introduction to AOP
affecting the rest. For example, changing the persistence requirement from a
relational database to an object database should not affect the business logic or
security requirements.

 Separating and identifying the concerns in a system is an important exercise
in the development of a software system, regardless of the methodology used.
Once we have done so, we can address each concern independently, making the
design task more manageable. The problem arises when we implement the con-
cerns into modules. Ideally, the implementation will preserve the independence
of the concerns, but this doesn’t always happen.

1.3.2 A one-dimensional solution
Crosscutting concerns, by their nature, span many modules, and current imple-
mentation techniques tend to mix them into the individual core modules. To
illustrate this, figure 1.4 shows a three-dimensional concern space, whereas the
code that implements the concerns is a continuous flow of calls, and in that sense
is one-dimensional. Such a mismatch results in an awkward mapping of the con-
cerns to the implementation.

 Since the implementation space is one-dimensional, its main focus is usually
the implementation of the core concern, and the implementation of the cross-
cutting concerns is mixed in with it. While we may naturally separate the individ-
ual requirements into mutually independent concerns during the design phase,
current programming methodologies do not allow us to retain the separation in
the implementation phase.

Figure 1.4 Mapping the N-dimensional concern space using a one-dimensional language. The
orthogonality of concerns in the concern space is lost when it is mapped to one-dimensional
implementation space.

Managing system concerns 11
1.3.3 It’s all about modularizing

It’s a commonly accepted premise that the best way of dealing with complexity is
to simplify it. In software design, the best way of simplifying a complex system is
to identify the concerns and then to modularize them. In fact, the OOP method-
ology was developed as a response to the need to modularize the concerns of a
software system. The reality is, though, that although OOP is good at modulariz-
ing core concerns, it falls short when it comes to modularizing the crosscutting
concerns. The AOP methodology was developed to address that shortfall. In AOP,
the crosscutting concerns are modularized by identifying a clear role for each
one in the system, implementing each role in its own module, and loosely cou-
pling each module to only a limited number of other modules.

 In OOP, the core modules can be loosely coupled through interfaces, but there
is no easy way of doing the same for crosscutting concerns. This is because a con-
cern is implemented in two parts: the server-side piece and the client-side piece.
(The terms server and client are used here in the classic OOP sense to mean the
objects that are providing a certain set of services and the objects using those ser-
vices. They should not be confused with the networked client and server.) OOP
modularizes the server part quite well in classes and interfaces. However, when
the concern is of a crosscutting nature, the client part, consisting of the requests
to the server, is spread over all of the clients.

 As an example, let’s look at a typical implementation of a crosscutting con-
cern in OOP: an authorization module that provides its services through an
abstract interface. The use of an interface loosens the coupling between the cli-
ents and the implementations of the interface. Clients who use the authorization
services through the interface are for the most part oblivious to the exact imple-
mentation they are using. Any changes to the implementation they are using will
not require any changes to the clients themselves. Likewise, replacing one autho-
rization implementation with another is just a matter of instantiating the right
kind of implementation. The result is that one authorization implementation
can be switched with another with little or no change to the individual client
modules. This configuration, however, still requires that each client have the
embedded code to call the API. Such calls will need to be in all the modules
requiring authorization and will be mixed in with their core logic.

 Figure 1.5 shows how a banking system would implement logging using con-
ventional techniques. Even when using a well-designed logging module that
offers an abstract API and hides the details of formatting and streaming the log
messages, each client—the accounting module, the ATM module, and the database

12 CHAPTER 1
Introduction to AOP
module—still needs the code to invoke the logging API. The overall effect is an
undesired tangling between all the modules needing logging and the logging
module itself. Each coupling is represented in the figure by a gray arrow.

 This is where AOP comes into the picture. Using AOP, none of the core mod-
ules will contain calls to logging services—they don’t even need to be aware of
the presence of logging in the system. Figure 1.6 shows the AOP implementation
of the same logging functionality shown in figure 1.5. The logging logic now
resides inside the logging module and logging aspect; clients no longer contain
any code for logging. The crosscutting logging requirements are now mapped
directly to just one module—the logging aspect. With such modularization, any
changes to the crosscutting logging requirements affect only the logging aspect,
isolating the clients completely. For now, don’t worry about the way in which AOP
achieves this. That will be explained in section 1.6.

 Modularizing crosscutting concerns is so important that there are several
techniques to achieve it. For example, the Enterprise JavaBeans (EJB) architec-
ture simplifies creating distributed, server-side applications, and handles the

Figure 1.5 Implementation of a logging concern using conventional techniques: The logging module
provides the API for logging. However, the client modules—Accounting, ATM, and Database—each
still need to embed the code to invoke the logging API.

Managing system concerns 13
crosscutting concerns, such as security, administration, performance, and con-
tainer-managed persistence. Let’s look at the crosscutting concern of persistence
as it is implemented by EJB. The bean developers focus on the business logic,
while the deployment developers focus on the deployment issues, such as map-
ping the bean data to the database. The bean developers, for the most part, are
oblivious to the storage issues. The EJB framework achieves the separation of the
persistence concern from the business logic through use of a deployment
descriptor—a file in XML format—that specifies how the bean’s fields map to
database columns. Similarly, the framework separates other crosscutting con-
cerns such as authentication and transaction management by managing their
specifications in the deployment descriptor.

 Another technique for handling crosscutting concerns is to use dynamic proxies,
which provide language support for modularizing the proxy design pattern. Dynamic
proxies are complicated and outside the scope of this book; however, this new feature

Figure 1.6 Implementation of a logging concern using AOP techniques: The logging aspect defines
the interception points needing logging and invokes the logging API upon the execution of those
points. The client modules no longer contain any logging-related code.

14 CHAPTER 1
Introduction to AOP
of Java, which has been available since Java Development Kit (JDK) 1.3, offers a
reasonable solution to modularize crosscutting concerns, as long as they are simple.

 The very existence of frameworks like EJB and language features like dynamic
proxies confirms the need for AOP. The advantage of AOP is that it is not limited
to a single domain in the way that EJB is limited to distributed server-side com-
puting, and that AOP code is simpler than that of dynamic proxies when they are
used alone.

1.4 Implementing crosscutting concerns in
nonmodularized systems

Let’s now take a more detailed look at the nature of crosscutting concerns. The
implementation of crosscutting concerns often becomes complicated by tangling
it with the implementation of core concerns. In listing 1.1, consider the follow-
ing skeleton implementation of a class that encapsulates some business logic in a
conventional OOP way.

public class SomeBusinessClass extends OtherBusinessClass {

 ... Core data members

 ... Log stream

 ... Cache update status

 ... Override methods in the base class

 public void someOperation1(<operation parameters>,
 <authenticated user>,
 ...) {
 ... Ensure authorization

 ... Ensure info satisfies contracts

 ... Lock the object to ensure thread-safety

 ... Ensure cache is up-to-date

 ... Log the start of operation

 ... Perform the core operation

 ... Log the completion of operation

 ... Unlock the object

Listing 1.1 Business logic implementation along with crosscutting concerns

Data to support
peripheral concerns

 b

Invocation of
peripheral
services

 c

Implementing crosscutting concerns 15
 }

 ... More operations similar to above addressing multiple concerns

 public void save(<persitance storage parameters>) {
 ...
 }

 public void load(<persitance storage parameters>) {
 ...
 }
}

There are a few observations we can make from this code snippet:
The log stream and cache update status do not seem to be related to the core
requirements of this class; they are part of the class only to support the system-
level requirements of the logging and caching concerns.
The someOperation1() method’s implementation seems to be doing a lot more
than just the core operation. It is taking care of peripheral concerns: logging,
authentication, multithread safety, contract validation, cache management, and
so forth.
It is not clear if save() and load(), which are performing persistence manage-
ment, should be in the class at all.

A real system would consist of many classes similar to the above. Many would
address the same peripheral concerns addressed in this class, such as authoriza-
tion and logging. Therefore, while we may have had a good understanding of
different crosscutting concerns and their separation during the design phase,
the implementation paid almost no attention to preserving the separation.

1.4.1 Symptoms of nonmodularization

We can broadly classify the symptoms of nonmodularization into two categories:
code tangling and code scattering. If you see these symptoms in your system, it is
most likely due to the conventional implementation of crosscutting concerns.
Let’s take a look at how you can recognize these symptoms.

Code tangling
Code tangling is caused when a module is implemented that handles multiple
concerns simultaneously. A developer often considers concerns such as business
logic, performance, synchronization, logging, security, and so forth while imple-
menting a module. This leads to the simultaneous presence of elements from

Methods to
support
peripheral
services

 d

 b

 c

 d

16 CHAPTER 1
Introduction to AOP
each concern’s implementation and results in code tangling. Figure 1.7 illus-
trates code tangling in a module.

 In the code snippet for the SomeBusinessClass class in listing 1.1, the method
SomeBusinessClass.someOperation1() contains code for authorization, contract
enforcement, optimization, and logging, all tangled up with the core operation.
Similarly, SomeBusinessClass itself contains operations for persistence manage-
ment as well as a support structure for logging and cache management, which
tangles them with the core state and behavior of the module.

Code scattering
Code scattering is caused when a single issue is implemented in multiple mod-
ules. Since crosscutting concerns, by definition, are spread over many modules,
related implementations are also scattered over all those modules. For example,
in a system using a database, performance concerns may affect all the modules
accessing the database.

 We can classify the code scattering into two distinct categories: duplicated
code blocks and complementary code blocks. The first kind is characterized by
repeated code of a nearly identical nature. For example, resource pooling will
typically involve adding nearly identical code to multiple modules to fetch a
resource from a pool and return the resource back to the pool. Figure 1.8 illus-
trates the scattered duplicated code blocks.

Figure 1.7 Code tangling caused by multiple simultaneous implementations of various concerns.
The figure shows how one module manages a part of multiple concerns.

Implementing crosscutting concerns 17
The second kind of code scattering happens when several modules implement
complementary parts of the concern. For example, in a conventionally imple-
mented access control system, you will perform authentication in one module,
pass the authenticated user to modules that need authorization, and then those
modules will perform the required authorization. All these pieces must be carved
to fit together perfectly—much like puzzle pieces—to implement the functional-
ity, as shown in figure 1.9.

 In figure 1.9, multiple modules include code for authentication logic and
access checking; they must work together to correctly implement the authoriza-
tion. For example, before you can check the credentials of a user (access control),
you must have verified that user’s authenticity (authentication).

Figure 1.8 Code scattering caused by the need to place nearly identical code blocks in multiple
modules to implement a functionality. In this banking system, many modules in the system must
embed the code to ensure that only authorized users access the services.

18 CHAPTER 1
Introduction to AOP
1.4.2 Implications of nonmodularization

Code tangling and code scattering together impact software design and develop-
ment in many ways: poor traceability, lower productivity, lower code reuse, poor
quality, and harder evolution. While we will discuss each implication separately,
they strongly affect one another. For example, poor traceability contributes to
lower productivity and poor quality:

■ Poor traceability—Simultaneous implementation of several concerns obscures
the mapping of the concern to its implementation. This causes difficulty in
tracing requirements to their implementation, and vice versa. For exam-
ple, you would have to potentially examine all modules to trace the imple-
mentation of an authentication concern.

■ Lower productivity—Simultaneous implementation of multiple concerns also
shifts the focus from the main concern to the peripheral concerns. The
lack of focus then leads to lower productivity as developers are sidetracked

Figure 1.9 Code scattering caused by the need to place complementary code blocks in multiple
modules to implement a functionality

Introducing AOP 19
from their primary objective in order to handle the crosscutting concerns.
Further, since different concern implementations may need different skill
sets, either several people will have to collaborate on the implementation
of a module or the developer implementing the module will need knowl-
edge of each domain. The more concerns you implement together, the
lower your probability of focusing on any one thing.

■ Lower code reuse—If a module is implementing multiple concerns, other
systems requiring similar functionality may not be able to readily use the
module due to a different set of concerns they might need to implement.
Consider a database access module. One project may need one form of
authentication to access the database, another project may need a different
form, and still another may need no authentication at all. The variation of
crosscutting requirements may render an otherwise useful module unusable.

■ Poor quality—Code tangling makes it more difficult to examine code and
spot potential problems, and performing code reviews of such implemen-
tations is harder. For example, reviewing the code of a module that imple-
ments multiple concerns will require the participation of an expert in each
of the concerns. Often not all of them are available at the same time, and
the ones who are may not pay sufficient attention to the concerns that are
outside their area of expertise.

■ Difficult evolution—An incomplete perspective and limited resources often
result in a design that addresses only current concerns. When future require-
ments arise, they often require reworking the implementation. Because
implementation is not modularized, this may mean modifying many mod-
ules. Modifying each subsystem for such changes can lead to inconsistencies.
It also requires spending considerable testing effort to ensure that this
implementation change does not introduce regression bugs.

All of these problems lead to a search for better approaches to architecture, design,
and implementation. Aspect-oriented programming offers one viable solution. In
the next section, we introduce you to AOP and give you a little of its history.

1.5 Introducing AOP

AOP builds on top of existing methodologies such as OOP and procedural pro-
gramming, augmenting them with concepts and constructs in order to modular-
ize crosscutting concerns. With AOP, you implement the core concerns using the
chosen base methodology. For example, if OOP is the base methodology, you

20 CHAPTER 1
Introduction to AOP
implement core concerns as classes. The aspects in the system encapsulate the
crosscutting concerns; they stipulate how the different modules in the system
need to be woven together to form the final system.

 The most fundamental way that AOP differs from OOP in managing crosscut-
ting concerns is that in AOP, the implementation of each concern is oblivious to
the crosscutting behavior being introduced into it. For example, a business logic
module is unaware that its operations are being logged or authorized. As a
result, the implementation of each individual concern evolves independently.

1.5.1 A bit of history

For years now, many theorists have agreed that the best way to create manage-
able systems is to identify and separate the system concerns. This general topic is
referred to as “separation of concerns” (SOC). In a 1972 paper, David Parnas
proposed that the best way to achieve SOC is through modularization—a process
of creating modules that hide their decisions from each other. In the ensuing
years, researchers have been studying various ways to manage concerns. OOP
provided a powerful way to separate core concerns. However, it left something to
be desired when it came to crosscutting concerns. Several methodologies—gen-
erative programming, meta-programming, reflective programming, compositional
filtering, adaptive programming, subject-oriented programming, aspect-oriented
programming, and intentional programming—have emerged as possible
approaches to modularizing crosscutting concerns. AOP is the most popular among
these. To learn more about the other methodologies and their history, see the
“Resources” section at the end of this book.

 Much of the early work that led to AOP today was done in universities all over
the world. Cristina Lopes and Gregor Kiczales of the Palo Alto Research Center
(PARC), a subsidiary of Xerox Corporation, were among the early contributors to
AOP. Gregor coined the term “AOP” in 1996. He led the team at Xerox that cre-
ated AspectJ, one of the first practical implementations of AOP, in the late 1990s.
Xerox recently transferred the AspectJ project to the open source community at
eclipse.org, which will continue to improve and support the project.

 AspectJ is an implementation of AOP, just as Java and SmallTalk are implemen-
tations of OOP. AspectJ is based on Java, but there are implementations of AOP for
other languages, ranging from AspectC for C to Pythius for Python, that apply the
same concepts that are in AspectJ to other languages. Further, there are a few Java
implementations of AOP other than AspectJ, such as Java Aspect Component
(JAC) from AOPSYS. These implementations differ in the ways they express the
crosscutting concerns and translate those concerns to form the final system.

Introducing AOP 21
1.5.2 The AOP methodology

In many ways, developing a system using AOP is similar to developing a system
using other methodologies: identify the concerns, implement them, and form
the final system by combining them. The AOP research community typically
defines these three steps in the following way:

1 Aspectual decomposition—In this step, you decompose the requirements to
identify crosscutting and core concerns. This step separates core-level
concerns from crosscutting, system-level concerns. For example, in the
SomeBusinessClass example in listing 1.1, we would identify the follow-
ing concerns: core business logic, logging, cache management, thread
safety, contract enforcement, persistence, and authorization. Of these,
only the core business logic is the core concern of SomeBusinessClass. All
other concerns are system wide concerns that will be needed by many
other modules and therefore are classified as crosscutting concerns.

2 Concern implementation—In this step, you implement each concern inde-
pendently. Using the previous example, developers would implement the
business logic unit, logging unit, authorization unit, and so forth. For the
core concern of a module, you can utilize procedural or OOP techniques
as usual. For example, let’s look at authorization. If you are using OOP
techniques, you may write an interface for the authorization, a few con-
crete implementations for it, and perhaps a class to abstract the creation
of the authorization implementation used in the system.

Understand that the term “core” is a relative term. For the authoriza-
tion module itself, the core concern would be mapping users to creden-
tials and determining if those credentials are sufficient to access an
authorized service. However, for the business logic module, the authori-
zation concern would be a peripheral concern and so would not be
implemented in the module at this time.

3 Aspectual recomposition—In this step, you specify the recomposition rules
by creating modularization units, or aspects. The actual process of recom-
position, also known as weaving or integrating, uses this information to
compose the final system. For our example, you would specify, in the lan-
guage provided by the AOP implementation, that each operation must
first ensure that the client has been authorized before it proceeds with
the business logic.

22 CHAPTER 1
Introduction to AOP
Remember the analogy of a light beam passing through a prism that we
used in figure 1.2 to illustrate the process of decomposing the requirements
into a set of concerns? That illustrated the first step of aspectual decomposi-
tion. Figure 1.10 shows the same prism analogy, only now we have added the
steps of concern implementation and aspectual recomposition. Notice that the
object that is responsible for integrating the concerns after they have been
implemented is called the weaver. We will talk more about the weaver in sec-
tion 1.6.

 The fundamental change that AOP brings is the preservation of the mutual
independence of the individual concerns when they are implemented. The
implementation can then be easily mapped back to the corresponding concerns,
resulting in a system that is simpler to understand, easier to implement, and
more adaptable to change.

1.6 Anatomy of an AOP language

The AOP methodology is just that—a methodology. In order to be of any use in
the real world, it must be implemented, or realized. As with any methodology, it
can be implemented in various ways. For example, one realization of the OOP
methodology specification consists of the Java language and tools such as the
compiler. In a similar manner, each realization of AOP involves specifying a lan-
guage and offering tools to work with that language. Like any other program-
ming methodology, an AOP implementation consists of two parts:

Figure 1.10 AOP development stages. In the first stage, you decompose the system requirements
into individual concerns and implement them independently. The weaver takes these
implementations and combines them together to form the final system.

Anatomy of an AOP language 23
■ The language specification describes the language constructs and syntax
that will be used to realize both the logic of the core concerns and the
weaving of the crosscutting concerns.

■ The language implementation verifies the code’s adherence to the lan-
guage specification and translates the code into an executable form. This
is commonly accomplished by a compiler or an interpreter.

1.6.1 The AOP language specification

Any realization of AOP must have a language that will be used to implement the
individual concerns and a language that will be used to implement the rules for
weaving the concern implementations together. Let’s take a closer look at these
two processes.

Implementation of concerns
As in other methodologies, the concerns of a system are implemented into modules
that contain the data and behavior needed to provide their services. For example, a
module that implements the core part of the caching concern will maintain a collec-
tion of cached objects, manage the validity of the cached object, and ensure
bounded memory consumption. To implement both the core and crosscutting con-
cerns, we normally use standard languages such as C, C++, and Java.

Weaving rules specification
Weaving rules specify how to integrate the implemented concerns in order to
form the final system. For example, once the core part of the logging concern
has been implemented in a module, you need to introduce logging into the sys-
tem. The weaving rule in this case specifies the log points, the information to be
logged, and so forth. The system then uses these rules to correctly invoke the
logging calls from the specified operations. The power of AOP comes from the
economical way in which the weaving rules can be expressed. For instance, in this
logging example, you can specify that all the public operations in the system will
be logged in just a few lines of code. This is much more succinct than actually
modifying each public operation to add logging code.

 Weaving rules can be very general or very specific in the ways they interact
with the core modules. For example, in the previous logging example, the weav-
ing rules did not need to mention any specific classes or operation in the system;
they were just woven into the entire system. On the other end of the spectrum, a
weaving rule may specify that a business rule that is to be applied to several mod-
ules may only be applied to specific operations, such as the credit and debit

24 CHAPTER 1
Introduction to AOP
operations in an Account class. The specificity of the weaving rules determines
the amount of coupling between the aspect and core logic once the weaving rules
have been applied.

 The language used for specifying weaving rules could be a natural extension
of that language or something entirely different. For example, an AOP imple-
mentation using Java as the base language might introduce new extensions that
blend well with the core Java language, or it could use a separate XML-based lan-
guage to express weaving rules.

1.6.2 The AOP language implementation

The AOP language implementation performs two logical steps: It first combines
the individual concerns using the weaving rules, and then it converts the result-
ing information into executable code. The process that combines the individual
concerns according to the weaving rules is called weaving and the processor
doing this job is called a weaver.

Weaving
Weaving is the process of composing the system from individual core modules
by following the weaving rules. In essence, the weaving rules determine the
final form of the system. The weaving rules are defined in aspects that are sep-
arate entities from the individual core modules. This separation makes it possi-
ble to change the woven system simply by providing alternative weaving rules
in the aspects.

 One way to look at the implementation of the weaving specification is to com-
pare it to event-based programming. In event-based programming, the system
fires events to notify interested parties of important incidents and the system
responds to those events by executing appropriate action. In AOP, the program is
woven with logic to “fire” virtual events and “respond” to the events with an
action that corresponds to the crosscutting concern it is implementing. The
result is the effective weaving of those actions into the places that generated the
events. Note, however, an important difference: Unlike event-based program-
ming, there is no explicit creation and firing of events and as such you won’t see
any code related to them. The mere execution of a part of the program consti-
tutes the virtual event generation.

The weaver
The weaver, the actual processor that does the weaving, can be implemented in
various ways. A simple way is through source-to-source translation. Here, source

Anatomy of an AOP language 25
code modules for individual classes and aspects are preprocessed by the aspect
compiler to produce woven source code. The aspect compiler then feeds this
converted code to the base language compiler to produce the final executable
code. Using this approach, a Java-based AOP implementation converts individ-
ual source input files into woven Java source code and then lets the Java com-
piler convert it into the byte code. Note that regardless of the approach taken,
the weaver does not modify the original source code.

 Another approach could be that the source code would first be compiled into
class files using the base language compiler. The class files would then be fed to
the aspect compiler, which would weave the aspects into the class files to produce
woven class files. Figure 1.11 shows a schematic of a compiler-based AOP lan-
guage implementation.

 Other implementations would be similar, but with the location and the pro-
cess of the weaving changed appropriately. For example, if the implementation
of AOP is Java-based, a special class loader could be used to perform the weaving
operation. Such an implementation will first load the byte code for the aspects,
weave them into the classes as they are being loaded, and supply those woven

Figure 1.11 An AOP language implementation that provides a weaver in the form of a compiler. The
compiler takes the implementation of the core and crosscutting concerns and weaves them together
to form the final system. In a Java-based AOP implementation, the core concern implementation
would be Java source files and class files and the system would be a set of class files.

26 CHAPTER 1
Introduction to AOP
versions of the classes to the underlying virtual machine (VM). Note that you will
still need to compile the aspects to create their byte code. However, you no
longer have to weave them with the rest of the classes prior to the execution,
since the weaving is now performed in just-in-time style.

1.6.3 A weaving example
Let’s consider how weaving with AOP would work with the example in listing 1.1.
We’ll look at the main business logic unit as well as the implementation of a few
crosscutting concerns. First let’s examine the class containing the core logic:

public class SomeBusinessClass extends OtherBusinessClass {
 ... Core data members

 ... Override methods in the base class

 public void someOperation1(<operation parameters>,
 ...) {

 ... Perform the core operation

 }

 ... More operations similar to above

}

Compare this class with the one in listing 1.1: All the data and method members,
method parameters, and code to perform crosscutting—the ancillary concerns—
have been removed and only the core business logic remains.

 Now let’s apply a crosscutting concern, using logging as an example. Let’s
assume that we have the following interface to abstract the logging implementa-
tion. The first step is to create an appropriate implementation of this interface
so that calls to it can be woven into SomeBusinessClass:

public interface Logger {
 public void log(String message);
}

Now that we have the logging class, we need to create the weaving rules that tell
the system what to do with it. The weaving rules are expressed here in natural
language. The programmatic equivalent of these rules go into an aspect:

 Logging Aspect:
 Rule 1: Create a logger object.
 Rule 2: Log the beginning of each public operation.
 Rule 3: Log the completion of each public operation.

Benefits of AOP 27
When the compiler or the VM combines SomeBusinessClass, which contains the
core logic, with the aspect containing the weaving rules, the result is an imple-
mentation that is equivalent to the following:

public class SomeBusinessClass extends OtherBusinessClass {
 ... Core data members

 ... Override methods in the base class

 Logger _logger = ...

 public void someOperation1(<operation parameters>,
 ...) {

 _logger.log("Starting someOperation1");

 ... Perform the core operation

 _logger.log("Completed someOperation1");
 }

 ... More operations similar to above
 ... Each public operation will be similarly
 ... woven in with log statements

}

You can now see that the woven code contains the calls to the log() method as
was prescribed by the weaving rules. Similarly, you can take care of the remaining
crosscutting concerns by having an implementation for each of them, and weav-
ing rules to specify the interaction between the individual concerns. Because
multiple crosscutting concerns are affecting a module, you will also have to spec-
ify the order in which the concerns should be woven. We now have a clear sepa-
ration of individual concerns and we avoid code tangling. We also no longer
have code scattering because the specification of weaving resides only in the
aspect that contains the weaving rules.

1.7 Benefits of AOP

Critics of AOP often talk about the difficulty of understanding it. And indeed
AOP takes some time, patience, and practice to master. However, the main rea-
son behind the difficulty is simply the newness of the methodology. After all,
when was the last time a brand-new programming methodology was accepted
without its share of adaptation resistance? AOP demands thinking about the system

Rule 1—creating a
logger object

Woven in automatically

Rule 2—logging the
beginning of the
operation

Woven in automatically

Rule 3—logging the
completion of the
operation

Woven in automatically

28 CHAPTER 1
Introduction to AOP
design and implementation in a new way. The benefits of AOP actually far out-
weigh the perceived costs. Among these benefits are:

■ Cleaner responsibilities of the individual module—AOP allows a module to take
responsibility only for its core concern; a module is no longer liable for
other crosscutting concerns. For example, a module accessing a database is
no longer responsible for pooling database connections as well. This results
in cleaner assignments of responsibilities, leading to improved traceability.

■ Higher modularization—AOP provides a mechanism to address each concern
separately with minimal coupling. This results in modularized implementation
even in the presence of crosscutting concerns. Such implementation results in a
system with much less duplicated code. Because the implementation of each
concern is separate, it also helps avoid code clutter. Modularized implementa-
tion results in an easier-to-understand and easier-to-maintain system.

■ Easier system evolution—AOP modularizes the individual aspects and makes
core modules oblivious to the aspects. Adding a new functionality is now a
matter of including a new aspect and requires no change to the core mod-
ules. Further, when we add a new core module to the system, the existing
aspects crosscut it, helping to create a coherent evolution. The overall
effect is a faster response to new requirements.

■ Late binding of design decisions—Recall the architect’s dilemma we discussed
previously: the architect is faced with underdesign/overdesign issues. With
AOP, the architect can delay making design decisions for future require-
ments because it is possible to implement those as separate aspects. Archi-
tects can now focus on the current core requirements of the system. New
requirements of a crosscutting nature can be handled by creating new aspects.
Further, AOP works in harmony with one of the most popular trends of
Extreme Programming (XP) by supporting the practice of “You aren’t gonna
need it” (YAGNI). This is a result of the observation that implementing a fea-
ture just because you may need it in the future often results in wasted effort
because you won’t actually need it. Now with AOP, you can practice YAGNI,
and if you do need functionality later, you can implement it without system
wide modifications.

■ More code reuse—The key to greater code reuse is a more loosely coupled imple-
mentation. Because AOP implements each aspect as a separate module, each
module is more loosely coupled than equivalent conventional implementa-
tions. In particular, core modules aren’t aware of each other—only the weaving
rule specification modules are aware of any coupling. By simply changing the
weaving specification instead of multiple core modules, you can change the sys-

Myths and realities of AOP 29
tem configuration. For example, a database module can be used with a differ-
ent logging implementation without change to either of the modules.

■ Improved time-to-market—Late binding of design decisions allows a much
faster design cycle. Cleaner separation of responsibilities allows better
matching of the module to the developer’s skills, leading to improved pro-
ductivity. More code reuse leads to reduced development time. Easier evo-
lution allows a quicker response to new requirements. All of these lead to
systems that are faster to develop and deploy.

■ Reduced costs of feature implementation—By avoiding the cost of modifying
many modules to implement a crosscutting concern, AOP makes it cheaper
to implement the crosscutting feature. By allowing each implementer to
focus more on the concern of the module and make the most of his or her
expertise, the cost of the core requirement’s implementation is also
reduced. The end effect is a cheaper overall feature implementation.

1.8 Myths and realities of AOP

Although AOP has grown in popularity in recent years, it is still often perceived
as difficult to implement and hard to learn. Let’s examine some common
assumptions about AOP, and whether or not they are true:

■ The program flow in an AOP-based system is hard to follow: True. This is actually
a step in the right direction! Given the limited number of concerns our
brain can deal with simultaneously, we can either worry about the order in
which instructions are executed or how the functionality is implemented at
a higher level. AOP is not the first time we are giving up the control of a
detailed and understandable program flow. In OOP too, polymorphic
methods make analyzing program flow a complex task. Even in procedural
languages such as C, if you use function pointers, the program flow is not
static and requires some effort to be understood.

■ AOP doesn’t solve any new problems: True. AOP is not about providing solu-
tions to yet unsolved problems; it is about solving the problems in a better
way, with much less effort and with improved maintainability. You can solve
problems with any methodology and language, and the only difference is
the complexity of the solution. In fact, there is nothing that cannot be
implemented with machine code.

■ AOP promotes sloppy design: False. An aspect-oriented solution is not the cure
for sloppy programs. AOP merely provides new ways to solve problems in
areas where procedural and OOP naturally fall short. In fact, AOP requires

30 CHAPTER 1
Introduction to AOP
a good design of core concerns and makes it easy to achieve an overall
clean design goal.

■ AOP is nice, but a nice abstract OOP interface is all you need: False. This issue
stems from the problem with the way crosscutting concerns are imple-
mented using OOP. The technique in OOP is to use an abstract API and
swap implementations underneath without the need to modify the cli-
ents of the API. While a clean OO interface simplifies the subsystems, it
still requires you to call that API from all the places that use it. A well-
abstracted API absolutely helps—in OOP and AOP—but the interface is no
substitute for AOP.

■ The AOP compiler simply patches the core implementation: False. Patching is a
process of fixing the implementation without fixing the underlying prob-
lem and results in making the overall system hard to understand. The
patching process tends to be unrestricted in terms of the kind of modifica-
tions that are permitted. AOP, on the other hand, provides a methodological
approach permitting only modifications that improve comprehensibility
and traceability.

■ AOP breaks the encapsulation: True, but only in a systematic and controlled
way. In object-oriented programming, a class encapsulates all the behavior.
The weaving added by AOP, however, removes this level of control from the
class. In this sense, AOP offers considerable power, and it can work won-
ders if you utilize the power correctly.

■ AOP will replace OOP: False. Core concerns will continue to be implemented
in OOP (or even procedural programming). AOP simply adds a few addi-
tional concepts to OOP, just as OOP adds to procedural programming.
However, AOP will change the way we use OOP and procedural languages
for implementing crosscutting concerns. A few currently used design pat-
terns and idioms that specifically address the problems of crosscutting con-
cerns will lose their importance. Further, crosscutting concerns will receive
a lot less attention during the initial design phase.

1.9 Summary

The most fundamental principle in software engineering is that the separation
of concerns leads to a system that is simpler to understand and easier to main-
tain. Various methodologies and frameworks exist to support this principle in
some form. For instance, with OOP, by separating interfaces from their imple-
mentation, you can modularize the core concerns well. However, for crosscutting

Summary 31
concerns, OOP forces the core modules to embed the crosscutting concern’s
logic. While the crosscutting concerns themselves are independent of each other,
the use of OOP leads to an implementation that no longer preserves the inde-
pendence in implementation.

 The current most common response to the difficulties of crosscutting con-
cerns is to develop new domain-specific solutions, such as the EJB specification
for enterprise server-side development. While these solutions do modularize
certain crosscutting concerns within the specific domain, their usefulness is
restricted to that domain. The cost of using these pre-wired solutions is reflected
in the time and effort that is required to learn each new technology that, in the
end, is useful only within its own limited scope.

 Aspect-oriented programming will change this by modularizing crosscutting
concerns in a generic and methodical fashion. With AOP, crosscutting concerns
are modularized by encapsulating them in a new unit called an aspect. Core con-
cerns no longer embed the crosscutting concern’s logic, and all the associated
complexity of the crosscutting concerns is isolated into the aspects. AOP marks
the beginning of new ways of dealing with a software system by viewing it as a
composition of mutually independent concerns. By building on the top of exist-
ing programming methodologies, it preserves the investment in knowledge
gained over the last few decades. In the short-term future, it is highly likely that
we will see AOP-based solutions providing powerful alternatives to domain-specific
solutions. For enterprise-level server-side development, for example, you will be
creating make-your-own frameworks by incorporating loosely coupled, prewrit-
ten, reusable aspects. You can then get exactly the functionality you need in your
application—no more, no less.

 AOP, being a brand-new methodology, is not the easiest to understand. The
learning curve involved is similar to transitioning from procedural to OOP. The
payoff, however, is tremendous. Most developers who are exposed to AOP are
amazed by its power once they get over the initial learning curve.

 In the next three chapters, we will study a specific implementation of AOP for
Java—AspectJ. The rest of the book shows specific examples that use AspectJ to
solve real problems. If you are not yet convinced of the power of AOP, those
examples will most definitely convince you.

2Introducing AspectJ
This chapter covers
■ AspectJ language overview
■ AspectJ “Hello, world!”
■ The join point model
■ The aspect construct
32

AspectJ: a bird’s eye view 33
AspectJ is a general-purpose, aspect-oriented extension to the Java programming
language. Given that AspectJ is an extension to Java, every valid Java program is
also a valid AspectJ program. An AspectJ compiler produces class files that con-
form to the Java byte-code specification, allowing any compliant Java virtual
machine (VM) to execute those class files. By using Java as the base language,
AspectJ passes on all the benefits of Java and makes it easy for Java programmers
to understand the AspectJ language.

 AspectJ consists of two parts: the language specification and the language
implementation. The language specification part defines the language in which
you write the code; with AspectJ, you implement the core concerns using the
Java programming language, and you use the extensions provided by AspectJ to
implement the weaving of crosscutting concerns. The language implementation
part provides tools for compiling, debugging, and integrating with popular inte-
grated development environments (IDEs).

 In this chapter, we introduce you to the core concepts that will get you started
with AspectJ. The next chapter will delve more deeply into the syntax of AspectJ.
Together, the two chapters should give you enough information to start writing
simple code in order to see the benefits that AspectJ offers. Chapter 4 will intro-
duce more advanced concepts. These three chapters also serve as reference
material for part 2 of this book.

2.1 AspectJ: a bird’s eye view

In chapter 1, we introduced the AOP concept of weaving the crosscutting con-
cerns into the core logic using weaving rules. Weaving rules specify “what” action
to perform “when” certain points in the execution of the program are encoun-
tered. In the AspectJ implementation of AOP, the AspectJ compiler uses the
modules containing the weaving rules, which address the crosscutting concerns,
to add new behavior into the modules that address the core concerns—all with-
out making any modifications to the core modules’ source code; the weaving
occurs only in the byte code that the compiler produces.

2.1.1 Crosscutting in AspectJ

In AspectJ, the implementation of the weaving rules by the compiler is called
crosscutting; the weaving rules cut across multiple modules in a systematic way in
order to modularize the crosscutting concerns. AspectJ defines two types of
crosscutting: static crosscutting and dynamic crosscutting.

34 CHAPTER 2
Introducing AspectJ
Dynamic crosscutting
Dynamic crosscutting is the weaving of new behavior into the execution of a
program. Most of the crosscutting that happens in AspectJ is dynamic.
Dynamic crosscutting augments or even replaces the core program execution
flow in a way that cuts across modules, thus modifying the system behavior. For
example, if you want to specify that a certain action be executed before the exe-
cution of certain methods or exception handlers in a set of classes, you can just
specify the weaving points and the action to take upon reaching those points in
a separate module.

Static crosscutting
Static crosscutting is the weaving of modifications into the static structure—the
classes, interfaces, and aspects—of the system. By itself, it does not modify the
execution behavior of the system. The most common function of static crosscut-
ting is to support the implementation of dynamic crosscutting. For instance, you
may want to add new data and methods to classes and interfaces in order to
define class-specific states and behaviors that can be used in dynamic crosscut-
ting actions. Another use of static crosscutting is to declare compile-time warn-
ings and errors across multiple modules.

2.1.2 Crosscutting elements

AspectJ uses extensions to the Java programming language to specify the weav-
ing rules for the dynamic and static crosscutting. The extensions are designed in
such a way that a Java programmer should feel at home while using them. The
AspectJ extensions use the following constructs to specify the weaving rules pro-
grammatically; they are the building blocks that form the modules that express
the crosscutting concern’s implementation. While we introduce them in this sec-
tion, each construct will be discussed in depth in the following sections of this
and the next chapter.

Join point
A join point is an identifiable point in the execution of a program. It could be a
call to a method or an assignment to a member of an object. In AspectJ, every-
thing revolves around join points, since they are the places where the crosscut-
ting actions are woven in. Let’s look at some join points in this code snippet:

public class Account {

 ...

AspectJ: a bird’s eye view 35
 void credit(float amount) {
 _balance += amount;
 }
}

The join points in the Account class include the execution of the credit()
method and the access to the _balance instance member.

Pointcut
A pointcut is a program construct that selects join points and collects context at
those points. For example, a pointcut can select a join point that is a call to a
method, and it could also capture the method’s context, such as the target object
on which the method was called and the method’s arguments.

 We can write a pointcut that will capture the execution of the credit()
method in the Account class shown earlier:

execution(void Account.credit(float))

To understand the difference between a join point and pointcut, think of pointcuts
as specifying the weaving rules and join points as situations satisfying those rules.

Advice
Advice is the code to be executed at a join point that has been selected by a point-
cut. Advice can execute before, after, or around the join point. Around advice
can modify the execution of the code that is at the join point, it can replace it, or
it can even bypass it. Using an advice, we can log a message before executing the
code at certain join points that are spread across several modules. The body of
advice is much like a method body—it encapsulates the logic to be executed
upon reaching a join point.

 Using the earlier pointcut, we can write advice that will print a message before
the execution of the credit() method in the Account class:

before() : execution(void Account.credit(float)) {
 System.out.println("About to perform credit operation");
}

Pointcuts and advice together form the dynamic crosscutting rules. While the
pointcuts identify the required join points, the advice completes the picture by
providing the actions that will occur at the join points.

Introduction
The introduction is a static crosscutting instruction that introduces changes to the
classes, interfaces, and aspects of the system. It makes static changes to the modules

36 CHAPTER 2
Introducing AspectJ
that do not directly affect their behavior. For example, you can add a method or
field to a class.

 The following introduction declares the Account class to implement the Bank-
ingEntity interface:

declare parents: Account implements BankingEntity;

Compile-time declaration
The compile-time declaration is a static crosscutting instruction that allows you to
add compile-time warnings and errors upon detecting certain usage patterns.
For example, you can declare that it is an error to call any Abstract Window Tool-
kit (AWT) code from an EJB.

 The following declaration causes the compiler to issue a warning if any part
of the system calls the save() method in the Persistence class. Note the use of
the call() pointcut to capture a method call:

declare warning : call(void Persistence.save(Object))
 : "Consider using Persistence.saveOptimized()";

Aspect
The aspect is the central unit of AspectJ, in the same way that a class is the
central unit in Java. It contains the code that expresses the weaving rules for
both dynamic and static crosscutting. Pointcuts, advice, introductions, and
declarations are combined in an aspect. In addition to the AspectJ elements,
aspects can contain data, methods, and nested class members, just like a normal
Java class.

 We can merge all the code examples from this section together in an aspect
as follows:

public aspect ExampleAspect {
 before() : execution(void Account.credit(float)) {
 System.out.println("About to perform credit operation");
 }

 declare parents: Account implements BankingEntity;

 declare warning : call(void Persistence.save(Object))
 : "Consider using Persistence.saveOptimized()";
}

Let’s take a look at how this all functions together. When you’re designing a
crosscutting behavior, the first thing you need to do is identify the join points at
which you want to augment or modify the behavior, and then you design what
that new behavior will be. To implement this design, you first write an aspect that

AspectJ Hello World 37
serves as a module to contain the overall implementation. Then, within the
aspect, you write pointcuts to capture the desired join points. Finally, you create
advice for each pointcut and encode within its body the action that needs to hap-
pen upon reaching the join points. For certain kinds of advice, you may use static
crosscutting to support the implementation.

 For example, consider an e-commerce implementation where you want to
write an aspect to log the execution of all public methods. First, you create the
aspect that will encapsulate the logging crosscutting concern. You then write a
pointcut in the aspect to capture all join points for the public operations in the
desired set of classes. Finally, in the aspect, you write an advice to this pointcut
and, within its body, you print a logging statement. If you wanted to keep some
logging-specific state in the logged classes, such as the number of method execu-
tions in each class, you could use a static introduction within the aspect to add an
integer data member to all classes being logged. The advice could then update
and read this integer field and print it to the logging stream.

 So far we have looked at simple code snippets. In the next section we will see
the first working example of AspectJ that we can compile and run.

2.2 AspectJ Hello World

Let’s begin our journey into the details of AspectJ by writing a simple applica-
tion. This code introduces a few AspectJ concepts and gives you a feel for the
language. Don’t worry if you don’t understand it all now. We will be discussing all
of these concepts in the following sections and the next chapter. Let’s start by
creating a class, as shown in listing 2.1, which contains two methods that will
print messages.

public class MessageCommunicator {
 public static void deliver(String message) {
 System.out.println(message);
 }

 public static void deliver(String person, String message) {
 System.out.print(person + ", " + message);
 }
}

Listing 2.1 MessageCommunicator.java

38 CHAPTER 2
Introducing AspectJ
The MessageCommunicator class has two methods: one to deliver a general mes-
sage and the other to deliver a message to a specified person. Next let’s write a
simple class to test the functionality of the MessageCommunicator class, as shown
in listing 2.2.

public class Test {
 public static void main(String[] args) {
 MessageCommunicator.deliver("Wanna learn AspectJ?");
 MessageCommunicator.deliver("Harry", "having fun?");
 }
}

When we compile the MessageCommunicator and the Test class together and run
the Test program, we see the following output. Since every valid Java program is
a valid AspectJ program, you can use the AspectJ compiler (ajc) to compile the
classes much as you would do with a Java compiler such as javac:

> ajc MessageCommunicator.java Test.java
> java Test
Wanna learn AspectJ?
Harry, having fun?

Without changing even a single line of code in the MessageCommunicator class, we
could enhance its functionality by adding an aspect to the system. Let’s add an
implementation for the crosscutting concern of manners, as shown in listing 2.3.
Before delivering any message, we would like to say “Hello!”

public aspect MannersAspect {
 pointcut deliverMessage()
 : call(* MessageCommunicator.deliver(..));

 before() : deliverMessage() {
 System.out.print("Hello! ");
 }
}

Now let’s compile our classes along with the aspect. Note that ajc needs all input
files to be provided together so that it can produce class files that have the
aspects woven in. Now when we run the program, we see the following output:

Listing 2.2 Test.java

Listing 2.3 MannersAspect.java

Aspect declaration b
Pointcut
declaration

 c

Advice d

AspectJ Hello World 39
> ajc MessageCommunicator.java MannersAspect.java Test.java
> java Test
Hello! Wanna learn AspectJ?
Hello! Harry, having fun?

Let’s understand the magic this new aspect and ajc perform. The Manners-
Aspect.java file declares the MannersAspect aspect:
The declaration of an aspect is similar to a class declaration.
The aspect defines a pointcut deliverMessage() that captures calls to all the
methods named deliver() in the MessageCommunicator class. The * indicates
that we don’t care about the return type, and the .. inside parentheses after
deliver specifies that we don’t care about the number of arguments or their
types either. In our example, the pointcut would capture calls to both of the
overloaded versions of deliver() in the MessageCommunicator class.
Then we define a piece of advice to execute before reaching the deliverMes-
sage() pointcut. The before() part indicates that the advice should run prior to
the execution of the advised join point—in our case, prior to calling any Mes-
sageCommunicator.deliver() method. In the advice, we simply print a message
“Hello!” without a linefeed.

With the aspect now present in the system, each time that MessageCommunica-
tor.deliver() is executed, the advice code that prints “Hello!” will execute
before the method.

 Let’s play some more and add another aspect to the system. This time, we will
use a language-appropriate salutation. In Hindi, the suffix “ji” is often added to
a person’s name to show respect—much like appending “san” in Japanese. We
will make this modification to the person’s name whenever a message is deliv-
ered to that person, as shown in listing 2.4.

public aspect HindiSalutationAspect {
 pointcut sayToPerson(String person)
 : call(* MessageCommunicator.deliver(String, String))
 && args(person, String);

 void around(String person) : sayToPerson(person) {
 proceed(person + "-ji");
 }
}

When we compile our classes with both MannersAspect and HindiSalutation-
Aspect and run the Test class, we see the following output:

 b
 c

 d

Listing 2.4 HindiSalutationAspect.java

 b
Pointcut to capture
the deliver() method

Advice to the
pointcut

 c
Advice body d

40 CHAPTER 2
Introducing AspectJ
> ajc MessageCommunicator.java MannersAspect.java
 HindiSalutationAspect.java Test.java
> java Test
Hello! Wanna learn AspectJ?
Hello! Harry-ji, having fun?

Let’s take a closer look at the HindiSalutationAspect aspect:
The pointcut captures all the join points that are making a call to the Message-
Communicator.deliver() method that take two arguments. Since our goal is to
append “-ji” to a person’s name, we will need to capture the person argument.
The args() part does just that; the first parameter to it specifies that the first
argument to the method be made available as a variable person. The second
parameter specifies that the second argument (the message) does not need to be
captured, but must be of type String. It does so by specifying type “String” for
the second argument, instead of the person argument.
To alter the person’s name in output (by appending “-ji”), we need to execute
the original operation with a changed argument. We cannot achieve this by using
the before() advice as that would simply execute additional code before the
advised operation. We have to modify the advised operation’s argument instead.
We therefore need the around advice to this join point, since it can execute the
original operation with an altered context.
This is the advice body. proceed() is an AspectJ keyword that tells the captured
join point to execute. We capture the original argument, append “-ji” to it, and
then pass it on to proceed(). The result is the invocation of the MessageCommuni-
cator.deliver() method with the altered argument.

By now, you must be wondering how AspectJ performs its magic. In the next sec-
tion, we’ll take a quick look at how the source files are compiled into the byte code.

2.3 AspectJ: under the hood

Since the byte code produced by the AspectJ compiler must run on any compli-
ant Java VM, it must adhere to the Java byte-code specification. This means any
crosscutting element must be mapped to one of the Java constructs. In this sec-
tion, we outline how the different elements in an AspectJ program are mapped
to pure Java byte code. Note that the discussion that follows presents a simplified
view of how AspectJ code is transformed into pure Java byte code. Further, the
details of the woven code will vary depending on the compiler version and the
compiler options.

 Here are the typical ways that the AspectJ compiler maps various crosscutting
elements to pure Java:

➥

 b

 c

 d

AspectJ: under the hood 41
■ Aspects are mapped to classes, with each data member and method becom-
ing the members of the class representing the aspect.

■ Advice is usually mapped to one or more methods. The calls to these
methods are then inserted into the join points matching the pointcut spec-
ified within the advice. Advice may also be mapped to code that is directly
inserted inside an advised join point.

■ Pointcuts are intermediate elements that instruct how advice is woven and
usually aren’t mapped to any program element, but they may have auxil-
iary methods to help perform matching at runtime.

■ Introductions are mapped by making the required modification, such as
adding the introduced fields to the target classes.

■ Compile-time warnings and errors have no effect on byte code. They sim-
ply cause the compiler to print warnings or abort the compilation when
producing an error.

In light of this information, let’s see how the MannersAspect (listing 2.3) would
look if the weaving process produced pure Java code at the source code level.
Note that in actuality, the AspectJ compiler produces byte code and not the
Java code as shown here. We’re showing you this code only to give you an idea
of the source code that would be roughly equivalent to the byte code pro-
duced. Also, some of the details that are beyond the scope of this discussion
have been omitted.

 First, let’s examine the code in a class that would be equivalent to the
aspect itself:

public class MannersAspect {
 public static MannersAspect aspectInstance;

 public final void before0$ajc() {
 System.out.print("Hello! ");
 }

 static {
 MannersAspect.aspectInstance = new MannersAspect();
 }
}

MannersAspect is mapped to a class of the same name. The static block of the
aspect ensures that the aspect instance is created as soon as the MannersAspect
class is loaded into the system—typically during the execution of some code that
refers to the aspect. The before advice is mapped to the before0$ajc() method

42 CHAPTER 2
Introducing AspectJ
whose body is identical to the advice body. The synthesized method name for the
advice, such as before0$ajc(), is purely for internal purposes.

 Now let’s see the equivalent code for the MessageCommunicator class, after it
has been aspected by MannersAspect:

public class MessageCommunicator {
 public static void deliver(String message) {
 MannersAspect.aspectInstance.before0$ajc();
 System.out.println(message);
 }

 public static void deliver(String person, String message) {
 MannersAspect.aspectInstance.before0$ajc();
 System.out.print(person + ", " + message);
 }
}

Recall that the deliverMessage() pointcut in MannersAspect is defined to capture
both of the overloaded deliver() methods in MessageCommunicator. To show the
effect of advice to the join points captured by deliverMessage(), the identical
modification must be made to both methods. Accordingly, we see that the Man-
nersAspect.aspectInstance.before0$ajc() call is made from both methods.

 The resulting code looks simple because MannersAspect itself is simple. For
complex aspects, the woven code is accordingly complex.

CAUTION Thinking about the language semantics in terms of the transformed
code helps in taking the mystery out of AspectJ. It also makes you ap-
preciate the hard work that the AspectJ compiler is performing—and
the hard work that you no longer need to perform! However, such
thinking has inherent within it the danger of bogging down too much in
the details of the transformed code. A better approach is to start think-
ing in terms of language semantics instead of transformation.

Now that you are familiar with the basic flavor of the AspectJ programming lan-
guage, let’s jump into the details. In the rest of this chapter, we examine the join
point model and aspects, followed by a brief description of the AspectJ imple-
mentation. In chapter 3, we look at the syntax of AspectJ code as it is used in
pointcuts, advice, and introductions.

The join point model 43
2.4 The join point model

The join point is the most fundamental concept in AspectJ. A join point is any
identifiable execution point in a system. A call to a method is a join point, and so
is a method’s execution. Even an assignment to a variable or a return statement
is a join point. In addition, the following are all join points: an object construc-
tion, a conditional check, a comparison, an exception handler, and even for,
while, and do/while loops. In AspectJ, the join points are the places where we can
interject the crosscutting actions; therefore, it is necessary to understand the join
point model in order to specify the weaving rules using pointcuts and advice.

 Not all of the join points in a system are available for your use. The join points
that you can select in pointcuts are called exposed join points. In order to prevent
implementation-dependent or unstable crosscutting, AspectJ deliberately exposes
only a subset of all the possible join points in the system. AspectJ, for example,
does not expose for loops because you can easily change a for loop to a while
loop that functions in the same manner. If such a change were to be made, all of
the advice to the join point for the for loop would no longer be valid since the
loop would no longer exist. Some of the join points exposed by AspectJ include
method calls and execution, object instantiation, field access, and exception han-
dlers. The exposed join points in the system are the only possible places in the
code where we can augment or alter the main program execution.

 All join points also have a context associated with them. For example, a call to
a join point in a method has the caller object, the target object, and the argu-
ments of the method available as the context. Similarly, the exception handler
join point would have the current object and the thrown exception as the con-
text. As we will see in chapter 3, certain pointcuts can capture this context and
pass it to advice to be used in the advice body to make decisions based on the
context. For example, a pointcut capturing a join point in a debit() method in
the Account class may collect the amount to be debited as context so that advice
to the join points can check it against the minimum balance requirement.

 In figure 2.1, the UML sequence diagram shows a graphical representation of
join points in an ATM transaction example, which illustrates some of the places
where you could introduce a new or alternative crosscutting behavior.

 In the sequence diagram, we see several join points that are encountered
when an ATM object invokes a debit() method on an Account object. The first
join point is the call to the debit() method itself. During the execution of the
debit() method, the join points for the execution of the getBalance() and set-
Balance() methods are encountered, and so on. Method calls aren’t the only join

44 CHAPTER 2
Introducing AspectJ
points in the diagram; an assignment to a member of a class—in this case, the
_balance of the Account class—is also a join point. We can write advice to per-
form an action at each of these join points. For example, the execution of set-
Balance() could detect and flag a minimum-balance rule violation.

2.4.1 Exposed join point categories

AspectJ exposes several categories of join points. It is very important to have a
clear understanding of these categories so that you can capture the join points

Figure 2.1 Join points in a program execution. Method calls and execution are some of the
most commonly used join points. (Not all the join points in the sequence diagram are shown in
the figure.)

The join point model 45
effectively when you do your crosscutting. In addition, it is important to know
the scope of the join points—that is, what code each join point encompasses—so
that when you write advice for that join point, it is applied to the proper place.
The following list details the categories of the join points exposed by AspectJ
and their semantics. In the next chapter, we will show you how to use various
pointcut constructs to capture these join points.

Method join points
There are two types of join points that AspectJ exposes for each method: execu-
tion and call join points. The execution join point is on the method body itself,
whereas the call join points are on other parts of the program, which are usually
the methods that are calling this method. Since in well-written software each
method performs a well-defined behavior, these join points represent the most
useful points at which to weave in crosscutting behavior. Therefore, these join
points are perhaps the most commonly used join points.

 The method execution join point encompasses the execution of all the code
within the body of the method itself. The following code shows an example of
the method execution join point for the debit() method:

public class Account {

 ...

 public void debit(float amount)
 throws InsufficientBalanceException {
 if (_balance < amount) {
 throw new InsufficientBalanceException(
 "Total balance not sufficient");
 } else {
 _balance -= amount;
 }
 }
}

In this code snippet, the join point for the execution of the debit() method is
the whole method body. This means that we can write advice for this join point
to be applied before, after, and around the body.

 The method call join point occurs at the places where this method is being
invoked. The following code shows an example of the method call join point for
the debit() method:

Account account = ...;
account.debit(100);

debit() method
execution join
point

debit() method
call join point

46 CHAPTER 2
Introducing AspectJ
In this code, the call join point is the call to the debit() method. Note that the
code that forms the arguments is not a part of the join point. For example, if the
debit() method is called in the statement account.debit(Currency.round
(100.2345)), the call Currency.round(100.2345) is not part of the debit()
method call join point.

 For most purposes, the difference between the execution and call join points
does not matter. However, at times you need to be careful about which method
join point you use. For example, consider a situation in which you need to advise
the debit() method in the Account class from another class. If you want the com-
piler to weave the Account class, you will use an execution join point. Otherwise,
if you want the compiler to affect only the caller class, you will use a call join
point. Additionally, there are various compiler options that control the weaving
scope. These options are discussed in appendix A.

Constructor join points
The exposed join points on a constructor are much like method join points,
except they represent the execution and invocation of the creation logic of an
object. The execution join point is on the constructor itself, whereas the call join
point is at the point where the creation logic is invoked. A typical use of these
join points is in advice that affects the construction of objects. For example, you
could advise the join points at the creation of certain classes to bypass the actual
creation and recycle a previously created object.

 The constructor execution join point encompasses the execution of the code
within the body of a constructor for an object that is being created. This code
shows an example of the constructor execution join point for the Account class:

public class Account {
 ...

 public Account(int accountNumber) {
 _accountNumber = accountNumber;
 }

 ...
}

Similar to the method execution join point, the execution join point for the
Account(int) constructor encompasses the whole constructor body.

 The constructor call join points represent the points in other methods that
invoke the creation of an object. The following code shows an example of a con-
structor call join point for the Account object:

Account account = new Account(199);

Account constructor
execution

The join point model 47
In this code, the constructor call join point is the call to the constructor. Just
like the method call join point, any code to form the arguments to a construc-
tor, such as method calls to get the arguments, will not be part of the construc-
tor call join point.

 The discussion of choosing an execution or a call join point for a method
applies to constructor join points equally well.

Field access join points
The join points for field access capture the read and write access to an instance
or class member of a class. Note that only access to the data member of a class or
aspect is exposed in AspectJ. In other words, join points corresponding to access
to local variables in a method are not exposed.

 The field read access join point captures the read access to an instance or
class member of a class. A typical usage of these join points is in advice to ensure
that objects are correctly initialized before their use. The following code snippet
shows a field read access join point in Account:

public class Account {

 int _accountNumber;

 ...

 public String toString() {
 return "Account: "
 + _accountNumber
 + ...
 }

 ...

}

In this code snippet, a join point for a field’s read access encompasses reading
the field as a part of creating the string representation of an object in the
toString() method.

 The field write access join point captures the modification to an instance or
class member of a class. These join points are typically used to enforce con-
straints, such as ensuring the field is within a range of valid values. The following
code snippet shows a field write access join point in Account:

public class Account {

 int _accountNumber;

Read access
join point

48 CHAPTER 2
Introducing AspectJ
 public Account(int accountNumber) {
 _accountNumber = accountNumber;
 }

 ...

}

In this code snippet, a join point for a field’s write access encompasses an assign-
ment to _accountNumber in the constructor.

Exception handler execution join points
The exception handler execution join points represent the handler block of an
exception type. Think of these join points as the catch blocks associated with an
exception type. These join points are useful in enforcing certain policies regard-
ing exception handling. This code shows the execution join points:

try {
 account.debit(amount);
} catch (InsufficientBalanceException ex) {
 postMessage(ex);
 OverdraftManager.applyOverdraftProtection(account,
 amount);
}

In this snippet, the exception handler join point encompasses the whole catch
block—in this case, the invocation of logging and overdraft protection logic.

Class initialization join points
The class initialization join points represent the loading of a class, including the
initialization of the static portion. These join points are used to perform class-
level crosscutting, such as the initialization of class (static) variables. This code
shows the class initialization join points:

public class Account {

 ...

 static {
 try {
 System.loadLibrary("accounting");
 } catch (UnsatisfiedLinkError error) {
 ... deal with the error
 }
 }

 ...
}

Write access
join point

Exception
handler join
point

Account class
initialization

The join point model 49
The class initialization join point in this code snippet encompasses a call to the
System.loadLibary() method and the try/catch block surrounding it. If there
were multiple static blocks, the join point will include all of those as well. Note
that this join point is present even when you do not have an explicit static block.
Such join points still represent the loading of the class and can be used to weave
class load-time actions.

Object initialization join points
The object initialization join points capture the initialization of an object starting
from the return of a parent class’s constructor until the end of the first called
constructor. While class initialization join points are encountered when a class
loader loads a class, object initialization occurs when an object is created. Typi-
cally, these join points are used in advice that needs to perform certain addi-
tional object initialization. This code shows the object initialization join points:

public class SavingsAccount extends Account {
 ...

 public SavingsAccount(int accountNumber, boolean isOverdraft) {
 super(accountNumber);
 _isOverdraft = isOverdraft;
 }

 public SavingsAccount(int accountNumber) {
 this(accountNumber, false);
 }

 ...
}

In this code snippet, if the first constructor is called, the object initialization join
point encompasses the assignment to the _isOverdraft instance member and
not the super(). If the second constructor is invoked, the call to this() and the
assignment in the first constructor form the join point.

Object pre-initialization join points
The object pre-initialization join point is rarely used. It encompasses the pas-
sage from the constructor that was called first to the beginning of its parent
constructor. Practically, it encompasses calls made while forming arguments to
the super() call in the constructor. This code shows the object pre-initialization
join points:

public class SavingsAccount extends Account {
 ...

Object
initialization
join points

50 CHAPTER 2
Introducing AspectJ
 public SavingsAccount(int accountNumber) {
 super(accountNumber,
 AccountManager.internalId(accountNumber)
);
 _type = AccountConstants.SAVINGS;
 }

 ...
}

In this code snippet, the object pre-initialization encompasses a call to the
AccountManager.internalId(accountNumber) method only—and not the entire
super() call.

Advice execution join points
The advice execution join point is a recent addition to the AspectJ language. It
encompasses the execution of every advice in the system. This join point’s usage
is not yet fully established. Such join points may be used to advise an advice for
purposes such as profiling the advice itself. This code shows the advice execution
join point:

public aspect MannersAspect {

 before() : deliverMessage() {
 System.out.print("Hello! ");
 }
}

public aspect LoggingAspect {
 after() : loggedOperations() {
 ...
 _logger.log(...);
 ...
 }

}

In this code snippet, the advice execution join points encompasses the before
and after advice in MannersAspect and LoggingAspect.

2.4.2 Join point demonstration example

Let’s create an example to help solidify our understanding of important join
points by printing out the join points that are encountered as the code is exe-
cuted. First, we will set up a simple class structure with an Account class and its
subclass SavingsAccount. This inheritance helps us understand the join points
occurring in the method and constructor invocation between the base and

Object pre-
initialization
join point

Advice
execution
join point

The join point model 51
derived classes. In this example, we need to jump ahead a little and use some
simple AspectJ constructs—pointcuts and advice—which we will explain in detail
in chapter 3.

 The Account class in listing 2.5 represents a simplified version of a bank
account. It contains methods for performing the debit and credit operations as
well as getting and setting the account balance.

public abstract class Account {
 private float _balance;
 private int _accountNumber;

 public Account(int accountNumber) {
 _accountNumber = accountNumber;
 }

 public void credit(float amount) {
 setBalance(getBalance() + amount);
 }

 public void debit(float amount)
 throws InsufficientBalanceException {
 float balance = getBalance();
 if (balance < amount) {
 throw new InsufficientBalanceException(
 "Total balance not sufficient");
 } else {
 setBalance(balance - amount);
 }
 }

 public float getBalance() {
 return _balance;
 }

 public void setBalance(float balance) {
 _balance = balance;
 }
}

The debit() method of the Account class declares that it may throw Insuffi-
cientBalanceException when the account balance is not sufficient to perform the
operation. Listing 2.6 shows the implementation of this exception.

Listing 2.5 Account.java

52 CHAPTER 2
Introducing AspectJ
class InsufficientBalanceException extends Exception {
 public InsufficientBalanceException(String message) {
 super(message);
 }
}

The SavingsAccount class is a specialization of the Account class that represents
the savings account. In our example in listing 2.7, it serves to show that the join
point for classes is connected with the inheritance relationship.

public class SavingsAccount extends Account {
 public SavingsAccount(int accountNumber) {
 super(accountNumber);
 }
}

Listing 2.8 is a simple test program that will cause the execution of the join points.

public class Test {
 public static void main(String[] args)
 throws InsufficientBalanceException {
 SavingsAccount account = new SavingsAccount(12456);
 account.credit(100);
 account.debit(50);
 }
}

Next, let’s write a simple tracing aspect, shown in listing 2.9, that prints the
information for all join points as the code executes. Since we have not officially
discussed the details of the pointcut, we will use only a within() pointcut along
with a negation operator to capture all the join points occurring outside the
aspect itself. (You’ll learn more about the within() pointcut in the next chap-
ter.) The before and after advice prints the information about the join points
captured by the tracePoints() pointcut. We also use a special variable—this-

JoinPoint—that is available in each advice body; thisJoinPoint is a special

Listing 2.6 InsufficientBalanceException.java

Listing 2.7 SavingsAccount.java

Listing 2.8 Test.java

The join point model 53
object that contains information about the join point. It will be discussed in
depth in chapter 4.

public aspect JoinPointTraceAspect {
 private int _callDepth = -1;

 pointcut tracePoints() : !within(JoinPointTraceAspect);

 before() : tracePoints() {
 _callDepth++;
 print("Before", thisJoinPoint);
 }

 after() : tracePoints() {
 print("After", thisJoinPoint);
 _callDepth--;
 }

 private void print(String prefix, Object message) {
 for(int i = 0, spaces = _callDepth * 2; i < spaces; i++) {
 System.out.print(" ");
 }
 System.out.println(prefix + ": " + message);
 }
}

We captured all the join points occurring outside the body of the aspect itself.
The !within(JoinPointTraceAspect) method captures all the calls, the execu-
tion, the set, the get, and so forth outside the JoinPointTraceAspect. Such exclu-
sion, a common idiom, is discussed in detail in chapter 8. For now, just know that
it prevents infinite recursion.
The before advice runs just before the execution of each advised join point. The
call depth is the level in the execution stack of method calls. We use the call
depth to get the indentation effect by printing additional spaces corresponding
to the call depth before each print statement; this helps us to better understand
the output. In the advice body, we increment the call depth to indicate that we
are going one level deeper into the call stack. Then we print the thisJoinPoint
object, which contains the text representation of the captured join point.
The after advice runs just after the execution of each advised join point. For the
call depth, we perform the opposite action to the one we did in the before
advice, since we are now going one level up in the call stack. Just as in the before
advice, we print the thisJoinPoint object.

Listing 2.9 JoinPointTraceAspect.java

The
capturing
of trace
points

 b

Before
advice

 c

After
advice

 d

 b

 c

 d

54 CHAPTER 2
Introducing AspectJ
When we compile all the classes and the tracing aspect and run the Test class, we
get the following output:

> ajc Account.java SavingsAccount.java
 InsufficientBalanceException.java JoinPointTraceAspect.java
 Test.java
> java Test
Before: staticinitialization(Test.<clinit>)
After: staticinitialization(Test.<clinit>)
Before: execution(void Test.main(String[]))
 Before: call(SavingsAccount(int))
 Before: staticinitialization(Account.<clinit>)
 After: staticinitialization(Account.<clinit>)
 Before: staticinitialization(SavingsAccount.<clinit>)
 After: staticinitialization(SavingsAccount.<clinit>)
 Before: preinitialization(SavingsAccount(int))
 After: preinitialization(SavingsAccount(int))
 Before: preinitialization(Account(int))
 After: preinitialization(Account(int))
 Before: initialization(Account(int))
 Before: execution(Account(int))
 Before: set(int Account._accountNumber)
 After: set(int Account._accountNumber)
 After: execution(Account(int))
 After: initialization(Account(int))
 Before: initialization(SavingsAccount(int))
 Before: execution(SavingsAccount(int))
 After: execution(SavingsAccount(int))
 After: initialization(SavingsAccount(int))
 After: call(SavingsAccount(int))
 Before: call(void Account.credit(float))
 Before: execution(void Account.credit(float))
 Before: call(float Account.getBalance())
 Before: execution(float Account.getBalance())
 Before: get(float Account._balance)
 After: get(float Account._balance)
 After: execution(float Account.getBalance())
 After: call(float Account.getBalance())
 Before: call(void Account.setBalance(float))
 Before: execution(void Account.setBalance(float))
 Before: set(float Account._balance)
 After: set(float Account._balance)
 After: execution(void Account.setBalance(float))
 After: call(void Account.setBalance(float))
 After: execution(void Account.credit(float))
 After: call(void Account.credit(float))
 Before: call(void Account.debit(float))
 Before: execution(void Account.debit(float))
 Before: call(float Account.getBalance())
 Before: execution(float Account.getBalance())

➥
➥

Aspects 55
 Before: get(float Account._balance)
 After: get(float Account._balance)
 After: execution(float Account.getBalance())
 After: call(float Account.getBalance())
 Before: call(void Account.setBalance(float))
 Before: execution(void Account.setBalance(float))
 Before: set(float Account._balance)
 After: set(float Account._balance)
 After: execution(void Account.setBalance(float))
 After: call(void Account.setBalance(float))
 After: execution(void Account.debit(float))
 After: call(void Account.debit(float))
After: execution(void Test.main(String[]))

Here are some keys to interpreting this output, and also to mapping the trace out-
put to the parts of the program flow that caused the execution of these join points:

■ The output lines that contain staticinitialization() show class-level ini-
tialization that occurs when a class gets loaded. The <clinit> part of the
output indicates the class initialization.

■ The output lines that contain execution() and call() show the execution
and call join points of a method or a constructor.

■ The output lines that contain get() and set() show the read and write
field access join points.

You can take this code as a base and play with it to gain a better understanding of
the join point model.

2.5 Aspects

Let’s take a closer look at aspects. To recap what we learned in section 2.1.2,
aspects are class-like entities that are the basic units for implementing aspect-
oriented crosscutting concerns. The AspectJ compiler takes the rules specified in
each aspect in the system and uses them to modify the behavior of the core mod-
ules in a crosscutting manner.

 As you can see here, an aspect declaration looks very much like a class declaration:

[access specification] aspect <AspectName>
 [extends class-or-aspect-name]
 [implements interface-list]
 [<association-specifier>(Pointcut)] {
 ... aspect body
}

56 CHAPTER 2
Introducing AspectJ
The keyword aspect declares that the element being defined is an aspect. Each
aspect has a name to enable the other parts of the program to refer to it and its ele-
ments using that name. Aspects may also have an access specification, extend
another aspect or a class, and implement interfaces. For now, ignore the optional
[<association-specifier>(Pointcut)] part; we will discuss it in chapter 4 in sec-
tion 4.3.

 The body of the aspect contains the code that expresses the crosscutting
rules. Advice, introductions, and compile-time declarations can only be defined
within aspects. Pointcuts, however, may be defined within classes and interfaces
as well as in aspects. The pointcuts in an aspect may have access specifiers, and
they may also be declared abstract. Advice, introductions, and compile-declarations
cannot be declared abstract and cannot have access specifiers.

 Since the simplest way to look at aspects is to see them as analogous to classes
in Java, let’s look at the similarities and differences between aspects and classes.
Aspects are similar to classes in the following ways:

■ Aspects can include data members and methods.

The data members and methods inside aspects function in the same way they
do in classes. For instance, the crosscutting concern could manage its state
using the data members, whereas the methods could implement behavior
that supports the crosscutting concern’s implementation, or they could sim-
ply be utility methods. Aspects may also include constructors. However, if a
concrete aspect includes a constructor, it must be a no-argument constructor
to allow the system to instantiate the aspect.

■ Aspects can have access specifications.

The access specifier of an aspect governs its visibility following the same rules
as classes and interfaces. Top-level aspects can have only public or packaged
(specified by omitting the access specifier) access. Nested aspects, like nested
classes, can have public, private, protected, or packaged access specifiers.
The following aspect, for example, does not specify the access, which means
that it has packaged or “friendly” access; it can be accessed by other objects in
the package in which it is declared:

aspect OverdraftProtection {
 ...
}

Aspects 57
■ Aspects can declare themselves to be abstract.
With abstract aspects, you can create reusable units of crosscutting by defer-
ring some of the implementation details to the concrete subaspects. An
abstract aspect can mark any pointcut or method as abstract, which allows a
base aspect to implement the crosscutting logic without needing the exact
details that only a system-specific aspect can provide. Note that an abstract
aspect by itself does not cause any weaving to occur; you must provide con-
crete subaspects to do so.

 An aspect that contains any abstract pointcut or method must declare
itself as an abstract aspect. In this respect, aspects resemble classes. Any sub-
aspect of an abstract aspect that does not define every abstract pointcut and
method in the base aspect, or that adds additional abstract pointcuts or
methods, must also declare itself abstract.

 The following example shows an abstract aspect that contains an abstract
pointcut and an abstract method:

public abstract aspect AbstractLogging {

 public abstract pointcut logPoints();

 public abstract Logger getLogger();

 before() : logPoints() {
 getLogger().log(Level.INFO, "Before: " + thisJoinPoint);
 }

}

In this aspect, the logPoints() pointcut is declared abstract in order to let
subaspects provide a definition for it. Similarly, the abstract method getLog-
ger() defers providing the logger object to subaspects. The advice that logs
the message uses both these abstract entities to perform its task. The net
effect is that the logging logic is embedded in the advice, while each sub-
aspect will fill in the details of the log points and the log object. In the follow-
ing discussion, we will see how a concrete aspect provides a definition for
abstract pointcuts and methods.

■ Aspects can extend classes and abstract aspects, as well as implement interfaces.
As we saw in the previous section, extending an abstract aspect is a very useful
mechanism that allows us to reuse prewritten aspects. These abstract aspects
implement the bulk of the logic, but they contain abstract pointcuts and
methods to defer the implementation of the specific details to the concrete

Abstract pointcut

Abstract method

Advice to abstract pointcut

Use of the
abstract
method

58 CHAPTER 2
Introducing AspectJ
subaspects. Although AspectJ allows an aspect to also extend a class and to
implement interfaces, it is uncommon to do so in practice.

 In the previous example, we looked at an abstract aspect called Abstract-
Logging. The following concrete aspect extends the AbstractLogging aspect
and provides definitions for its abstract pointcut and method that are suitable
for a banking system:

public aspect BankLogging extends AbstractLogging {

 public pointcut logPoints()
 : call(* banking..*(..));

 public Logger getLogger() {
 return Logger.getLogger("banking");
 }
}

In this aspect, we have defined the logPoints() pointcut to capture all calls to
all methods in classes that are part of the banking root package. The getLog-
ger() method implementation returns the logger that is specific to the bank-
ing system. You can have many such subaspects, each providing the required
definitions. The result is that the code in the base aspect is shared, while the
subaspects can provide the application-specific details.

■ Aspects can be embedded inside classes and interfaces as nested aspects.
You embed aspects into classes and interfaces when the aspect’s implementa-
tion is intimately tied to its enclosing class or interface. Since the aspect
resides in the same source file, this simplifies the modifications required for
the aspect’s implementation when the enclosing entity changes.

Despite their similarities, aspects are not classes. Here are some of the ways that
aspects are different from classes:
■ Aspects cannot be directly instantiated.

It is the system that instantiates the aspect objects appropriately. In other
words, you never use “new” to create an object for an aspect. AspectJ doesn’t
guarantee anything except that the object will be instantiated at or before you
use it. Further, it is possible that in some cases, the system won’t instantiate an
object for an aspect at all!

 By default, an aspect is associated with the virtual machine—only one
instance will be created for the whole system. However, there are ways to asso-
ciate aspects with a set of objects and join points, and have multiple instances
in the system. We will study aspect association in detail in chapter 4.

Pointcut
definition

Method
definition

AspectJ logistics overview 59
■ Aspects cannot inherit from concrete aspects.
Although aspects can inherit from abstract aspects, they cannot inherit from
concrete aspects. The reason for this limit is to reduce complexity. For exam-
ple, with this rule in place, the AspectJ compiler considers only the concrete
aspects for the purpose of weaving. If subaspects of a concrete aspect were
allowed, the language would have to specify how such subaspects interact
with the weaving specified by their base aspect. In practice, this restriction
usually does not pose any significant problem.

■ Aspects can be marked as privileged.
Aspects can have an access specifier of privileged. This gives them access to
the private members of the classes they are crosscutting. We will learn more
about this in chapter 4.

Now that we have examined the purpose and characteristics of aspects, we are
almost ready to turn our attention to the pointcuts and advice that we write
within those aspects to implement crosscutting. But before we delve into the
details of the code in chapter 3, let’s review the logistics of the AspectJ lan-
guage implementation.

2.6 AspectJ logistics overview

AspectJ offers a complete set of tools ranging from a compiler to integrated
development environment (IDE) support. Let’s look at each of these tools in
more detail.

2.6.1 The AspectJ compiler

The compiler is the central piece of the AspectJ language implementation. It
combines the different Java and aspect source files and JARs (containing the
byte-code form of classes, interfaces, and aspects) together to produce woven
class files or JAR files as output. The input can be in the form of pure Java
classes, pure aspects, or a mix. The system that is created by the AspectJ com-
piler contains only pure Java byte code and therefore can run on any conformant
VM. Figure 2.2 shows an overview of the compiler logistics.

 In AspectJ, the weaving process is carried out during the compilation phase.
The AspectJ compiler processes the source and byte code for the core concerns
and the programmatic expression of the weaving rules in the aspects. It then
applies the rules to all the modules and creates output class files or a JAR file.
Appendix A provides the compilation logistics in detail.

60 CHAPTER 2
Introducing AspectJ
In the future, AspectJ has plans to support runtime weaving, in which the weav-
ing will take place as the classes are loaded in the virtual machine. Most likely,
the implementation of this just-in-time weaving will be a special class loader.

2.6.2 AspectJ browser

AspectJ provides a standalone tool, ajbrowser, which is an aspect-aware source
browser that shows how weaving rules affect different parts of program. For
instance, it shows how advice applies to various places in an application.
Figure 2.3 shows how the relationship between various elements in a program is
displayed by ajbrowser. The view offered by ajbrowser is useful in understanding
the effect of a crosscutting construct on different modules. It is also useful as a
debugging tool, to help you verify that your constructs crosscut the desired parts
of the system.

 If you are using an IDE with AspectJ integration, you won’t need to use
ajbrowser very much, since the IDEs offer a superset of its functionality. IDEs not
only offer the view of the crosscutting structure, but also all the features you
would expect of an IDE, such as integrated debugging and project management.

Figure 2.2 The AspectJ compiler takes input in various forms and creates a woven system. The
output produced by the compiler complies with the Java byte-code specification and therefore can
run on any compliant Java VM.

AspectJ logistics overview 61
2.6.3 IDE integration

IDE support offers an integrated approach to editing, compiling, executing, and
debugging tasks. AspectJ eases the development process by providing integration
with popular IDEs, including Eclipse, Forte, NetBeans, JBuilder, and Emacs JDEE.
The integration with the IDEs is achieved through plug-ins for each IDE. See
“Resources” at the end of this book for information on where you can download
the plug-in for the IDE of your choice. Using these integrations, you can edit,
compile, and debug your project in the same way you would work with a project
written only in Java. Figure 2.4 shows how our HelloWorld example would look
in the Eclipse IDE.

 In figure 2.4, we see that the IDE shows the standard views, along with the
crosscutting view of the system. This view is nearly identical to that shown in
ajbrowser in figure 2.3. It shows how an advice applies to different parts of the
code. This is a useful debugging tool when you have applied advice to a method
but you do not see any effect.

Figure 2.3 A typical session with AspectJ’s source browser, ajbrowser. The tool shows how a
crosscutting element affects different parts of an application. Similarly, it shows the reverse
relationship: how a part of program is affected by crosscutting elements. This tool is useful if you
aren’t using any IDEs that have integration with AspectJ.

62 CHAPTER 2
Introducing AspectJ
2.7 Summary

AspectJ adds a few new concepts to Java, creating a powerful language that
includes ease of learning and modularization of crosscutting concerns, all while
retaining the benefits of Java, such as platform independency. Simply by learn-
ing the concepts, a Java programmer can benefit from the AOP paradigm right
away. Aspects allow the separation of crosscutting actions from the core modules.
You can then add new functionality without changing any code in the core mod-
ules, and without them even being aware of it.

 Aspect-oriented programming in AspectJ is simple: choose where you want to
crosscut, choose the kind of action you need to perform the task, and program-
matically specify both of them. The AspectJ language exposes the necessary join
points in a Java program. Pointcuts let you choose the join points you want to

Figure 2.4 Developing applications using Eclipse-AspectJ integration. The overall feel for editing,
building, and debugging is like a pure Java project. The IDE also shows how crosscutting elements
affect the various parts of the system. The integrations with other IDEs, such as NetBeans and
JBuilder, offer essentially the same functionality.

Summary 63
affect, and advice allows you to specify the action at those join points. The static
crosscutting mechanism enables you to modify the static structure of the system
in a way that affects multiple modules. AspectJ complements—and doesn’t com-
pete with—Java. By utilizing its power to modularize the crosscutting concerns,
Java programmers no longer need to recode multiple modules when implement-
ing or changing a crosscutting concern.

 In this chapter, we studied the core AspectJ concepts. The next chapter intro-
duces the basic AspectJ syntax that will enable you to start writing simple programs.

3AspectJ: syntax basics
This chapter covers
■ Pointcuts and advice
■ Static crosscutting
■ Simple examples that put it all together
64

Pointcuts 65
In chapter 2, we presented a high-level view of the AspectJ programming language
and introduced the concepts of aspects and join points. In this chapter, we con-
tinue with a more detailed discussion of the constructs of pointcuts and advice,
their syntax, and their usages. We also examine a few simple programs that will
help strengthen your understanding of the AspectJ constructs. Then we discuss
static crosscutting. After reading this chapter, you should be able to start writing
short programs in AspectJ.

 Although the AspectJ syntax may feel somewhat complex in the beginning,
once you understand the basic form, it’s quite natural for a seasoned Java pro-
grammer: An aspect looks like a class, a pointcut looks like a method declara-
tion, and an advice looks like a method implementation. Rest assured that the
AspectJ syntax is actually a lot easier than it appears.

3.1 Pointcuts

Pointcuts capture, or identify, join points in the program flow. Once you capture
the join points, you can specify weaving rules involving those join points—such
as taking a certain action before or after the execution of the join points. In addi-
tion to matching join points, certain pointcuts can expose the context at the
matched join point; the actions can then use that context to implement crosscut-
ting functionality.

 A pointcut designator identifies the pointcut either by name or by an expres-
sion. The terms pointcut and pointcut designator are often used interchangeably.
You can declare a pointcut inside an aspect, a class, or an interface. As with data
and methods, you can use an access specifier (public, private, and so forth) to
restrict access to it.

 In AspectJ, pointcuts can be either anonymous or named. Anonymous pointcuts,
like anonymous classes, are defined at the place of their usage, such as a part of
advice, or at the time of the definition of another pointcut. Named pointcuts are
elements that can be referenced from multiple places, making them reusable.

 Named pointcuts use the following syntax:

[access specifier] pointcut pointcut-name([args]) : pointcut-definition

Notice that the name of the pointcut is at the left of the colon and the pointcut
definition is at the right. The pointcut definition is the syntax that identifies the
join points where you want to insert some action. You can then specify what that
action is in advice, and tie the action to the pointcut there. (We discuss advice in
section 3.2.) Pointcuts are also used in static crosscutting to declare compile-time

66 CHAPTER 3
AspectJ: syntax basics
errors and warnings (discussed in section 3.3.3) as well as to soften exceptions
thrown by captured join points (see section 4.4).

 Let’s look at an example of a pointcut named accountOperations() in
figure 3.1 that will capture calls to all the methods in an Account class.

 You can then use the named pointcut in advice as follows:
before() : accountOperations() {
 ... advice body
}

An anonymous pointcut, on the other hand, is a pointcut expression that is
defined at the point of its usage. Since an anonymous pointcut cannot be refer-
enced from any place other than where it is defined, you cannot reuse such a
pointcut. Consequently, in practice, you should avoid using anonymous point-
cuts when the pointcut code is complicated. Anonymous pointcuts can be speci-
fied as a part of advice, as follows:

advice-specification : pointcut-definition

For example, the previous example of a named pointcut and advice could all be
replaced just by advice that includes an anonymous pointcut, like this:

before() : call(* Account.*(..)) {
 ... advice body
}

You can also use an anonymous pointcut as part of another pointcut. For exam-
ple, the following pointcut uses an anonymous within() pointcut to limit the
join points captured by calls to accountOperations() that are made from classes
with banking as the root package:

pointcut internalAccountOperations()
 : accountOperations() && within(banking..*);

Figure 3.1 Defining a named pointcut. A named pointcut is defined using the
pointcut keyword and has a name. The part after the colon defines the captured join
points using the pointcut type and signature.

Pointcuts 67
Anonymous pointcuts may be used in a similar manner as a part of static crosscutting.
 Regardless of whether a pointcut is named or anonymous, its functionality is

expressed in the pointcut definition, which contains the syntax that identifies the
join points. In the following sections, we examine this syntax and learn how
pointcuts are constructed.

NOTE There is a special form of named pointcut that omits the colon and the
pointcut definition following it. Such a pointcut does not match any join
point in the system. For example, the following pointcut will capture no
join point:

pointcut threadSafeOperation();

We will discuss the use of this form in section 8.5.3.

3.1.1 Wildcards and pointcut operators

Given that crosscutting concerns, by definition, span multiple modules and
apply to multiple join points in a system, the language must provide an eco-
nomical way to capture the required join points. AspectJ utilizes a wildcard-
based syntax to construct the pointcuts in order to capture join points that share
common characteristics.

 Three wildcard notations are available in AspectJ:

■ * denotes any number of characters except the period.
■ .. denotes any number of characters including any number of periods.
■ + denotes any subclass or subinterface of a given type.

Just like in Java, where unary and binary operators are used to form complex
conditional expressions composed of simpler conditional expressions, AspectJ
provides a unary negation operator (!) and two binary operators (|| and &&) to
form complex matching rules by combining simple pointcuts:

■ Unary operator—AspectJ supports only one unary operation—! (the nega-
tion)—that allows the matching of all join points except those specified by
the pointcut. For example, we used !within(JoinPointTraceAspect) in the
tracing example in listing 2.9 to exclude all the join points occurring
inside the JoinPointTraceAspect’s body.

■ Binary operators—AspectJ offers || and && to combine pointcuts. Combin-
ing two pointcuts with the || operator causes the selection of join points

68 CHAPTER 3
AspectJ: syntax basics
that match either of the pointcuts, whereas combining them with the &&
operator causes the selection of join points matching both the pointcuts.

The precedence between these operators is the same as in plain Java. AspectJ
also allows the use of parentheses with the unary and binary operators to over-
ride the default operator precedence and make the code more legible.

3.1.2 Signature syntax

In Java, the classes, interfaces, methods, and fields all have signatures. You use
these signatures in pointcuts to specify the places where you want to capture join
points. For example, in the following pointcut, we are capturing all the calls to
the credit() method of the Account class:

pointcut creditOperations() : call(void Account.credit(float));

When we specify patterns that will match these signatures in pointcuts, we refer
to them as signature patterns. At times, a pointcut will specify a join point using
one particular signature, but often it identifies join points specified by multiple
signatures that are grouped together using matching patterns. In this section, we
first examine three kinds of signature patterns in AspectJ—type, method, and
field—and we then see how they are used in pointcut definitions in section 3.1.3.

 Pointcuts that use the wildcards *, .., and + in order to capture join points
that share common characteristics in their signatures are called property-based
pointcuts. We have already seen an example of a signature that uses * and .. in
figure 3.1. Note that these wildcards have different usages in the type, method,
and field signatures. We will point out these usages as we discuss the signatures
and how they are matched.

Type signature patterns
The term type collectively refers to classes, interfaces, and primitive types. In AspectJ,
type also refers to aspects. A type signature pattern in a pointcut specifies the join
points in a type, or a set of types, at which you want to perform some crosscutting
action. For a set of types, it can use wildcards, unary, and binary operators. The *
wildcard is used in a type signature pattern to specify a part of the class, interface, or
package name. The wildcard .. is used to denote all direct and indirect subpack-
ages. The + wildcard is used to denote a subtype (subclass or subinterface).

 For example, the following signature matches JComponent and all its direct
and indirect subclasses, such as JTable, JTree, JButton, and so on:

javax.swing.JComponent+

Pointcuts 69
The javax.swing.JComponent portion matches the class JComponent in the
javax.swing package. The + following it specifies that the signature will match all
the subclasses of javax.swing.JComponent as well.

 Let’s look at a few examples. Note that when packages are not explicitly spec-
ified, the types are matched against the imported packages and the package to
which the defining aspect or class belongs. Table 3.1 shows simple examples of
matching type signatures.

In table 3.2, we combine type signatures with unary and binary operators.

Although certain pointcut definitions use only a type signature pattern by itself to
designate all join points in all types that match the pattern, type signature patterns

Table 3.1 Examples of type signatures

Signature Pattern Matched Types

Account Type of name Account.

*Account Types with a name ending with Account such as SavingsAccount and
CheckingAccount.

java.*.Date Type Date in any of the direct subpackages of the java package, such as
java.util.Date and java.sql.Date.

java..* Any type inside the java package or all of its direct subpackages, such as
java.awt and java.util, as well as indirect subpackages, such as
java.awt.event and java.util.logging.

javax..*Model+ All the types in the javax package or its direct and indirect subpackages
that have a name ending in Model and their subtypes. This signature would
match TableModel, TreeModel, and so forth, and all their subtypes.

Table 3.2 Examples of a combined type signature using unary and binary operators

Signature Pattern Matched Types

!Vector All types other than Vector.

Vector || Hashtable Vector or Hashtable type.

javax..*Model ||
javax.swing.text.Document

All types in the javax package or its direct and indirect subpack-
ages that have a name ending with Model or
javax.swing.text.Document.

java.util.RandomAccess+
&& java.util.List+

All types that implement both the specified interfaces. This signa-
ture, for example, will match java.util.ArrayList since it
implements both the interfaces.

70 CHAPTER 3
AspectJ: syntax basics
are also used within the method, constructor, and field signature patterns to fur-
ther refine the selection of join points. In figure 3.1, the pointcut uses the Account
type signature as a part of the method signature—* Account.*(..). For example,
if you want to identify all method call join points in a set of classes, you specify a
pointcut that includes a signature pattern matching all of the type signatures of
the classes, as well as the method call itself. Let’s take a look at how that works.

Method and constructor signature patterns
These kinds of signature patterns allow the pointcuts to identify call and execu-
tion join points in methods that match the signature patterns. Method and con-
structor signatures need to specify the name, the return type (for methods only),
the declaring type, the argument types, and modifiers. For example, an add()
method in a Collection interface that takes an Object argument and returns a
boolean would have this signature:

public boolean Collection.add(Object)

The type signature patterns used in this example are boolean, Collection, and
Object. The portion before the return value contains modifiers, such as the
access specification (public, private, and so on), static, or final. These modifi-
ers are optional, and the matching process will ignore the unspecified modifiers.
For instance, unless the final modifier is specified, both final and nonfinal
methods that match the rest of the signature will be selected. The modifiers can
also be used with the negation operator to specify matching with all but the spec-
ified modifier. For example, !final will match all nonfinal methods.

 When a type is used in the method signature for declaring classes, interfaces,
return types, arguments, and declared exceptions, you can specify the type signa-
ture discussed in tables 3.1 and 3.2 in place of specifying exact types.

 Please note that in method signatures, the wildcard .. is used to denote any
type and number of arguments taken by a method. Table 3.3 shows examples of
matching method signatures.

Table 3.3 Examples of method signatures

Signature Pattern Matched Methods

public void Collection.clear() The method clear() in the Collection class that has
public access, returns void, and takes no arguments.

public void
Account.debit(float) throws
InsufficientBalanceException

The public method debit() in the Account class that
returns void, takes a single float argument, and declares
that it can throw InsufficientBalanceException.

Pointcuts 71
A constructor signature is similar to a method signature, except for two differ-
ences. First, because constructors do not have a return value, there is no return
value specification required or allowed. Second, because constructors do not

public void Account.set*(*) All public methods in the Account class with a name start-
ing with set and taking a single argument of any type.

public void Account.*() All public methods in the Account class that return void
and take no arguments.

public * Account.*() All public methods in the Account class that take no argu-
ments and return any type.

public * Account.*(..) All public methods in the Account class taking any number
and type of arguments.

* Account.*(..) All methods in the Account class. This will even match
methods with private access.

!public * Account.*(..) All methods with nonpublic access in the Account class.
This will match the methods with private, default, and
protected access.

public static void
Test.main(String[] args)

The static main() method of a Test class with pub-
lic access.

* Account+.*(..) All methods in the Account class or its subclasses. This will
match any new method introduced in Account’s sub-
classes.

* java.io.Reader.read(..) Any read() method in the Reader class irrespective of
type and number of arguments to the method. In this case,
it will match read(), read(char[]), and
read(char[], int, int).

*
java.io.Reader.read(char[],..)

Any read() method in the Reader class irrespective of
type and number of arguments to the method as long as the
first argument type is char[]. In this case, it will match
read(char[]) and read(char[], int, int), but
not read().

* javax..*.add*Listener(Event-
Listener+)

Any method whose name starts with add and ends in Lis-
tener in the javax package or any of the direct and indi-
rect subpackages that take one argument of type
EventListener or its subtype. For example, it will match
TableModel.addTableModelListener(Table-
ModelListener).

* *.*(..) throws Remote-
Exception

Any method that declares it can throw RemoteException.

Table 3.3 Examples of method signatures (continued)

Signature Pattern Matched Methods

72 CHAPTER 3
AspectJ: syntax basics
have names as regular methods do, new is substituted for the method name in a
signature. Let’s consider a few examples of constructor signatures in table 3.4.

Field signature patterns
Much like the method signature, the field signature allows you to designate a
member field. You can then use the field signatures to capture join points corre-
sponding to read or write access to the specified fields. A field signature must
specify the field’s type, the declaring type, and the modifiers. Just as in method
and constructor signatures, you can use type signature patterns to specify the
types. For example, this designates a public integer field x in the Rectangle class:

public int java.awt.Rectangle.x

 Let’s dive straight into a few examples in table 3.5.

Table 3.4 Examples of constructor signatures

Signature Pattern Matched Constructors

public Account.new() A public constructor of the Account class taking
no arguments.

public Account.new(int) A public constructor of the Account class taking a
single integer argument.

public Account.new(..) All public constructors of the Account class taking
any number and type of arguments.

public Account+.new(..) Any public constructor of the Account class or its
subclasses.

public *Account.new(..) Any public constructor of classes with names end-
ing with Account. This will match all the public
constructors of the SavingsAccount and
CheckingAccount classes.

public Account.new(..) throws
InvalidAccountNumberException

Any public constructors of the Account class that
declare they can throw InvalidAccountNum-
berException.

Table 3.5 Examples of field signatures

Signature Pattern Matched Fields

private float Account._balance Private field _balance of the Account class

* Account.* All fields of the Account class regardless of an
access modifier, type, or name

Pointcuts 73
Now that you understand the syntax of the signatures, let’s see how to put them
together into pointcuts.

3.1.3 Implementing pointcuts

Let’s recap: Pointcuts are program constructs that capture a set of exposed join
points by matching certain characteristics. Although a pointcut can specify a sin-
gle join point in a system, the power of pointcuts comes from the economical way
they match a set of join points.

 There are two ways that pointcut designators match join points in AspectJ.
The first way captures join points based on the category to which they belong.
Recall from the discussion in section 2.4.1 that join points can be grouped into
categories that represent the kind of join points they are, such as method call
join points, method execution join points, field get join points, exception han-
dler join points, and so forth. The pointcuts that map directly to these categories
or kinds of exposed join points are referred as kinded pointcuts.

 The second way that pointcut designators match join points is when they are
used to capture join points based on matching the circumstances under which
they occur, such as control flow, lexical scope, and conditional checks. These
pointcuts capture join points in any category as long as they match the pre-
scribed condition. Some of the pointcuts of this type also allow the collection of
context at the captured join points. Let’s take a more in-depth look at each of
these types of pointcuts.

Kinded pointcuts
Kinded pointcuts follow a specific syntax to capture each kind of exposed join
point in AspectJ. Once you understand the categories of exposed join points, as
discussed in section 2.4.1, you will find that understanding kinded pointcuts is
simple—all you need is their syntax. Table 3.6 shows the syntax for each of the
kinded pointcuts.

 When you understand the pointcut syntax in table 3.6 and the signature syn-
tax as described in section 3.1.2, you will be able to write kinded pointcuts that

!public static * banking..*.* All nonpublic static fields of banking and its
direct and indirect subpackages

public !final *.* Nonfinal public fields of any class

Table 3.5 Examples of field signatures (continued)

Signature Pattern Matched Fields

74 CHAPTER 3
AspectJ: syntax basics
capture the weaving points in the system. Once you express the pointcuts in this
fashion, you can use them as a part of dynamic crosscutting in the advice con-
struct as well as in static crosscutting constructs. For example, to capture all pub-
lic methods in the Account class, you use a call() pointcut along with one of the
signatures in table 3.3 to encode the pointcut as follows:

call(public * Account.*())

Similarly, to capture all write accesses to a private _balance field of type float in
the Account class, you would use a set() pointcut with the signature described in
table 3.3 to encode the pointcut as follows:

set(private float Account._balance)

Let’s take a quick look at an example of how a pointcut is used in static crosscut-
ting. In the following snippet, we declare that calling the Logger.log() method
will result in a compile-time warning. The pointcut call(void Logger.log(..))
is a kinded pointcut of the method call category type. We will discuss the com-
pile-time error and warning declaration in section 3.3.3:

declare warning : call(void Logger.log(..))
 : "Consider Logger.logp() instead";

Now that we’ve examined the kinded pointcuts, let’s look at the other type of
pointcut—the ones that capture join points based on specified conditions

Table 3.6 Mapping of exposed join points to pointcut designators

Join Point Category Pointcut Syntax

Method execution execution(MethodSignature)

Method call call(MethodSignature)

Constructor execution execution(ConstructorSignature)

Constructor call call(ConstructorSignature)

Class initialization staticinitialization(TypeSignature)

Field read access get(FieldSignature)

Field write access set(FieldSignature)

Exception handler execution handler(TypeSignature)

Object initialization initialization(ConstructorSignature)

Object pre-initialization preinitialization(ConstructorSignature)

Advice execution adviceexecution()

Pointcuts 75
regardless of the kind of join point it is. This type of pointcut offers a powerful
way to capture certain complex weaving rules.

Control-flow based pointcuts
These pointcuts capture join points based on the control flow of join points cap-
tured by another pointcut. The control flow of a join point defines the flow of the
program instructions that occur as a result of the invocation of the join point.
Think of control flow as similar to a call stack. For example, the Account.debit()
method calls Account.getBalance() as a part of its execution; the call and the
execution of Account.getBalance() is said to have occurred in the Account.
debit() method’s control flow, and therefore it has occurred in the control flow
of the join point for the method. In a similar manner, it captures other methods,
field access, and exception handler join points within the control flow of the
method’s join point.

 A control-flow pointcut always specifies another pointcut as its argument.
There are two control-flow pointcuts. The first pointcut is expressed as
cflow(Pointcut), and it captures all the join points in the control flow of the
specified pointcut, including the join points matching the pointcut itself. The
second pointcut is expressed as cflowbelow(Pointcut), and it excludes the join
points in the specified pointcut. Table 3.7 shows some examples of the usage
of control-flow based pointcuts.

Table 3.7 Examples of control-flow based pointcuts

Pointcut Description

cflow(call(* Account.debit(..)) All the join points in the control flow of any
debit() method in Account that is called,
including the call to the debit() method itself

cflowbelow(call(* Account.debit(..)) All the join points in the control flow of any
debit() method in Account that is called, but
excluding the call to the debit() method itself

cflow(transactedOperations()) All the join points in the control flow of the join
points captured by the transactedOpera-
tions() pointcut

cflowbelow(execution(Account.
new(..))

All the join points in the control flow of any of the
Account’s constructor execution, excluding the
constructor execution itself

cflow(staticinitializer(Banking-
Database))

All the join points in the control flow occurring dur-
ing the class initialization of the BankingData-
base class

76 CHAPTER 3
AspectJ: syntax basics
The sequence diagram in figure 3.2 shows the graphical representation of the
cflow() and cflowbelow() pointcuts. Here, the area encompassing the cap-
tured join points is superimposed on a sequence diagram that shows an

Figure 3.2 Control-flow based pointcuts capture every join point occurring in the control flow of
join points matching the specified pointcut. The cflow() pointcut includes the matched join point
itself, thus encompassing all join points occurring inside the outer box, whereas cflowbelow()
excludes that join point and thus captures only join points inside the inner box.

Pointcuts 77
Account.debit() method that is called by an ATM object. The difference
between the matching performed by the cflow() and cflowbelow() pointcuts is
also depicted.

 One common usage of cflowbelow() is to select nonrecursive calls. For exam-
ple, transactedOperations() && !cflowbelow(transactedOperations()) will select
the methods that are not already in the context of another method captured by
the transactedOperations() pointcut.

Lexical-structure based pointcuts
A lexical scope is a segment of source code. It refers to the scope of the code as it
was written, as opposed to the scope of the code when it is being executed, which
is the dynamic scope. Lexical-structure based pointcuts capture join points
occurring inside a lexical scope of specified classes, aspects, and methods. There
are two pointcuts in this category: within() and withincode(). The within()
pointcuts take the form of within(TypePattern) and are used to capture all the
join points within the body of the specified classes and aspects, as well as any
nested classes. The withincode() pointcuts take the form of either within-
code(MethodSignature) or withincode(ConstructorSignature) and are used to
capture all the join points inside a lexical structure of a constructor or a method,
including any local classes in them. Table 3.8 shows some examples of the usage
of lexical-structure based pointcuts.

One common usage of the within() pointcut is to exclude the join points in the
aspect itself. For example, the following pointcut excludes the join points corre-
sponding to the calls to all print methods in the java.io.PrintStream class that
occur inside the TraceAspect itself:

call(* java.io.PrintStream.print*(..)) && !within(TraceAspect)

Table 3.8 Examples of lexical-structure based pointcuts

Pointcut Natural Language Description

within(Account) Any join point inside the Account class’s lexical scope

within(Account+) Any join point inside the lexical scope of the Account class
and its subclasses

withincode(*
Account.debit(..))

Any join point inside the lexical scope of any debit()
method of the Account class

withincode(* *Account.get-
Balance(..))

Any join point inside the lexical scope of the getBalance()
method in classes whose name ends in Account

78 CHAPTER 3
AspectJ: syntax basics
Execution object pointcuts
These pointcuts match the join points based on the types of the objects at execu-
tion time. The pointcuts capture join points that match either the type this,
which is the current object, or the target object, which is the object on which the
method is being called. Accordingly, there are two execution object pointcut des-
ignators: this() and target(). In addition to matching the join points, these
pointcuts are used to collect the context at the specified join point.

 The this() pointcut takes the form this(Type or ObjectIdentifier); it
matches all join points that have a this object associated with them that is of the
specified type or the specified ObjectIdentifier’s type. In other words, if you
specify Type, it will match the join points where the expression this instanceof
<Type> is true. The form of this pointcut that specifies ObjectIdentifier is used
to collect the this object. If you need to match without collecting context, you
will use the form that uses Type, but if you need to collect the context, you will
use the form that uses ObjectIdentifier. We discuss context collection in
section 3.2.6.

 The target() pointcut is similar to the this() pointcut, but uses the target of
the join point instead of this. The target() pointcut is normally used with a
method call join point, and the target object is the one on which the method is
invoked. A target() pointcut takes the form target(Type or ObjectIdentifier).
Table 3.9 shows some examples of the usage of execution object pointcuts.

Note that unlike most other pointcuts that take the TypePattern argument,
this() and target() pointcuts take Type as their argument. So, you cannot use
the * or .. wildcard while specifying a type. You don’t need to use the + wildcard
since subtypes that match are already captured by Java inheritance without +;
adding + will not make any difference.

 Because static methods do not have the this object associated with them, the
this() pointcut will not match the execution of such a method. Similarly,

Table 3.9 Examples of execution object pointcuts

Pointcut Natural Language Description

this(Account) All join points where this is instanceof Account. This will match all join
points like methods calls and field assignments where the current execution
object is Account, or its subclass, for example, SavingsAccount.

target(Account) All the join points where the object on which the method called is
instanceof Account. This will match all join points where the target object
is Account, or its subclass, for example, SavingsAccount.

Pointcuts 79
because static methods are not invoked on a object, the target() pointcut will
not match calls to such a method.

 There are a few important differences in the way matching is performed
between within() and this(): The former will match when the object in the lexi-
cal scope matches the type specified in the pointcut, whereas the latter will match
when the current execution object is of a type that is specified in the pointcut or
its subclass. The code snippet that follows shows the difference between the two
pointcuts. We have a SavingsAccount class that extends the Account class. The
Account class also contains a nested class: Helper. The join points that will be cap-
tured by within(Account) and this(Account) are annotated.

public class Account {

 ...

 public void debit(float amount)
 throws InsufficientBalanceException {
 ...
 }

 private static class Helper {
 ...
 }
}

public class SavingsAccount extends Account {

 ...

}

In this example, within(Account) will match all join points inside the definition of
the Account class, including any nested classes, but no join points inside its subclasses,
such as SavingsAccount. On the other hand, this(Account) will match all join points
inside the definition of the Account class as well as SavingsAccount, but will exclude
any join points inside either class’s nested classes. You can match all the join points in
subclasses of a type while excluding the type itself by using the this(Type) &&
!within(Type) idiom. Another difference between the two pointcuts is their context
collection capability: within() cannot collect any context, but this() can.

 Also note that the two pointcuts call(* Account.*(..)) and call(* *.*(..)) &&
this(Account) won’t capture the same join points. The first one will pick up all the
instance and static methods defined in the Account class and all the parent classes in
the inheritance hierarchy, whereas the latter will pick up the same instance methods
and any methods in the subclasses of the Account class, but none of the static methods.

Captured by
within(Account)

Captured by
this(Account)

Captured by
within(Account)

Captured by
this(Account)

80 CHAPTER 3
AspectJ: syntax basics
Argument pointcuts
These pointcuts capture join points based on the argument type of a join point.
For method and constructor join points, the arguments are simply the method and
constructor arguments. For exception handler join points, the handled exception
object is considered an argument, whereas for field write access join points, the
new value to be set is considered the argument for the join point. Argument-based
pointcuts take the form of args(TypePattern or ObjectIdentifier, ..).

 Similar to execution object pointcuts, these pointcuts can be used to capture
the context, but again more will be said about this in section 3.2.6. Table 3.10
shows some examples of the usage of argument pointcuts.

Conditional check pointcuts
This pointcut captures join points based on some conditional check at the join
point. It takes the form of if(BooleanExpression). Table 3.11 shows some exam-
ples of the usage of conditional check pointcuts.

We now have completed the overview of all the pointcuts supported in AspectJ.
In the next section, we study the dynamic crosscutting concept of advice. Writing
an advice entails first specifying a pointcut and then defining the action to be
taken at the join points captured by the pointcut. Later, in section 3.3, we discuss
using pointcuts for static crosscutting.

Table 3.10 Examples of argument pointcuts

Pointcut Natural Language Description

args(String,..,
int)

All the join points in all methods where the first argument is of type String
and the last argument is of type int.

args(Remote-
Exception)

All the join points with a single argument of type RemoteException. It
would match a method taking a single RemoteException argument, a field
write access setting a value of type RemoteException, or an exception
handler of type RemoteException.

Table 3.11 Examples of conditional check pointcuts

Pointcut Natural Language Description

if(System.currentTimeMillis() >
triggerTime)

All the join points occurring after the current time has
crossed the triggerTime value.

if(circle.getRadius() < 5) All the join points where the circle’s radius is smaller
than 5. The circle object must be a context collected by
the other parts of the pointcut. See section 3.2.6 for
details about the context-collection mechanism.

Advice 81
3.2 Advice

Advice is the action and decision part of the crosscutting puzzle. It helps you
define “what to do.” Advice is a method-like construct that provides a way to
express crosscutting action at the join points that are captured by a pointcut. The
three kinds of advice are as follows:

■ Before advice executes prior to the join point.
■ After advice executes following the join point.
■ Around advice surrounds the join point’s execution. This advice is special in

that it has the ability to bypass execution, continue the original execution,
or cause execution with an altered context.

Figure 3.3 Various points in a program flow where you can advise the join point (not all possible
points are shown). Each circle represents an opportunity for before or after advice. The passage
between the matching circles on each lifeline represents an opportunity for around advice.

82 CHAPTER 3
AspectJ: syntax basics
Join points exposed by AspectJ are the only points where you apply an advice.
Figure 3.3 shows various join points in an execution sequence at which you can
introduce a new behavior via advice.

3.2.1 Anatomy of advice

Let’s look at the general syntactical structure of an advice. We will study the
details of each kind of advice—before, after, and around—in subsequent sec-
tions. An advice can be broken into three parts: the advice declaration, the point-
cut specification, and the advice body. Let’s look at two examples of these three
parts. Both examples will use the following named pointcut:

pointcut connectionOperation(Connection connection)
 : call(* Connection.*(..) throws SQLException)
 && target(connection);

This named pointcut consists of two anonymous pointcuts. The method call
pointcut captures calls to any method of the Connection class that takes any argu-
ment and returns any type. The target() pointcut captures the target object of
the method calls. Now let’s look at an example of before and around advice
using the named pointcut:

before(Connection connection):
 connectionOperation (connection) {
 System.out.println("Performing operation on " + connection);
}

Object around(Connection connection) throws SQLException
 : connectionOperation (connection) {
 System.out.println("Operation " + thisJoinPoint
 + " on " + connection
 + " started at "
 + System.currentTimeMillis());

 proceed(connection);

 System.out.println("Operation " + thisJoinPoint
 + " on " + connection
 + " completed at "
 + System.currentTimeMillis());
}

The part before the colon is the advice declaration, which specifies when the
advice executes relative to the captured join point—before, after, or around it.
The advice declaration also specifies the context information available to the
advice body, such as the execution object and arguments, which the advice body

Advice declaration b
Pointcut specification c

 b
 c

Advice
body

 d

 d

 b

Advice 83
can use to perform its logic in the same way a method would use its parameters.
It also specifies any checked exceptions thrown by the advice.
The part after the colon is the pointcut; the advice executes whenever a join
point matching the pointcut is encountered. In our case, we use the named
pointcut, connectionOperation(), in the advice to log join points captured by
the pointcut.
Just like a method body, the advice body contains the actions to execute and is
within the {}. In the example, the before advice body prints the context collected
by the pointcut, whereas the around advice prints the start and completion time
of each connection operation. thisJoinPoint is a special variable available in
each join point. We will study its details in the next chapter, section 4.1. In
around advice, the proceed() statement is a special syntax to carry out the cap-
tured operation that we examine in section 3.2.4.

Let’s take a closer look at each type of advice.

3.2.2 The before advice

The before advice executes before the execution of the captured join point. In
the following code snippet, the advice performs authentication prior to the exe-
cution of any method in the Account class:

before() : call(* Account.*(..)) {
 ... authenticate the user
}

If you throw an exception in the before advice, the captured operation won’t exe-
cute. For example, if the authentication logic in the previous advice throws an
exception, the method in Account that is being advised won’t execute. The before
advice is typically used for performing pre-operation tasks, such as policy
enforcement, logging, and authentication.

3.2.3 The after advice

The after advice executes after the execution of a join point. Since it is often
important to distinguish between normal returns from a join point and those
that throw an exception, AspectJ offers three variations of after advice: after
returning normally, after returning by throwing an exception, and returning
either way. The following code snippet shows the basic form for after advice that
returns either way:

after() : call(* Account.*(..)) {
 ... log the return from operation
}

 c

 d

84 CHAPTER 3
AspectJ: syntax basics
The previous advice will be executed after any call to any method in the Account
class, regardless of how it returns—normally or by throwing an exception. Note
that an after advice may be used not just with methods but with any other kind of
join point. For example, you could advise a constructor invocation, field write-
access, exception handler, and so forth.

 It is often desirable to apply an advice only after a successful completion of
captured join points. AspectJ offers “after returning” advice that is executed
after the successful execution of join points. The following code shows the form
for after returning advice:

after() returning : call(* Account.*(..)) {
 ... log the successful completion
}

This advice will be executed after the successful completion of a call to any
method in the Account class. If a captured method throws an exception, the
advice will not be executed. AspectJ offers a variation of the after returning
advice that will capture the return value. It has the following syntax:

 after() returning(<ReturnType returnObject>)

You can use this form of the after returning advice when you want to capture the
object that is returned by the advised join point so that you can use its context in
the advice. Note that unless you want to capture the context, you don’t need to
supply the parentheses following returning. See section 3.2.6 for more details on
collecting the return object as context.

 Similar to after returning advice, AspectJ offers “after throwing” advice,
except such advice is executed only when the advised join point throws an excep-
tion. This is the form for after advice that returns after throwing an exception:

after() throwing : call(* Account.*(..)) {
 ... log the failure
}

This advice will be executed after a call to any method in the Account class that
throws an exception. If a method returns normally, the advice will not be exe-
cuted. Similar to the variation in the after returning advice, AspectJ offers a vari-
ation of the after throwing advice that will capture the thrown exception object.
The advice has the following syntax:

after() throwing (<ExceptionType exceptionObject>)

You can use this form of the after throwing advice when you want to capture the
exception that is thrown by the advised method so that you can use it to make

Advice 85
decisions in the advice. See section 3.2.6 for more details on capturing the
exception object.

3.2.4 The around advice

The around advice surrounds the join point. It has the ability to bypass the execu-
tion of the captured join point completely, or to execute the join point with the
same or different arguments. It may also execute the captured join points multiple
times, each with different arguments. Some typical uses of this advice are to per-
form additional execution before and after the advised join point, to bypass the
original operation and perform some other logic in place of it, or to surround the
operation with a try/catch block to perform an exception-handling policy.

 If within the around advice you want to execute the operation that is at the
join point, you must use a special keyword—proceed()—in the body of the
advice. Unless you call proceed(), the captured join point will be bypassed.
When using proceed(), you can pass the context collected by the advice, if any, as
the arguments to the captured operation or you can pass completely different
arguments. The important thing to remember is that you must pass the same
number and types of arguments as collected by the advice. Since proceed()
causes the execution of the captured operation, it returns the same value
returned by the captured operation. For example, while in an advice to a method
that returns a float value, invoking proceed() will return the same float value as
the captured method. We will study the details of returning a value from an
around advice in section 3.2.7.

 In the following snippet, the around advice invokes proceed() with a try/catch
block to handle exceptions. This snippet also captures the context of the opera-
tion’s target object and argument. We discuss that part in section 3.2.6:

void around(Account account, float amount)
 throws InsufficientBalanceException :
 call(* Account.debit(float) throws InsufficientBalanceException)
 && target(account)
 && args(amount) {
 try {
 proceed(account, amount);
 } catch (InsufficientBalanceException ex) {
 ... overdraft protection logic
 }
}

In the previous advice, the advised join point is the call to the Account.debit()
method that throws InsufficientBalanceException. We capture the Account

86 CHAPTER 3
AspectJ: syntax basics
object and the amount using the target() and args() pointcuts. In the body of
the advice, we surround the call to proceed() with a try/catch block, with the
catch block performing overdraft protection logic. The result is that when the
advice is executed, it in turn executes the captured method using proceed(). If
an exception is thrown, the catch block executes the overdraft protection logic
using the context that it captured in the target() and args() pointcuts.

3.2.5 Comparing advice with methods

As you can see, the advice declaration part looks much like a method signature.
Although it does not have a name, it takes arguments and may declare that it can
throw exceptions. The arguments form the context that the advice body can use
to perform its logic, just like in a method. The before and after advice cannot
return anything, while the around advice does and therefore has a return type.
The pointcut specification part uses named or anonymous pointcuts to capture
the join points to be advised. The body of advice looks just like a method body
except for the special keyword proceed() that is available in the around advice.

 By now, you might be thinking that advice looks an awful lot like methods.
Let’s contrast the two here. Like methods, advice:

■ Follows access control rules to access members from other types and aspects
■ Declares that it can throw checked exceptions
■ Can refer to the aspect instance using this

Unlike methods, however, advice:
■ Does not have a name
■ Cannot be called directly (it’s the system’s job to execute it)
■ Does not have an access specifier (this makes sense because you cannot

directly call advice anyway)
■ Has access to a few special variables besides this that carry information

about the captured join point: thisJoinPoint, thisJoinPointStaticPart,
and thisEnclosingJoinpointStaticPart (we examine these variables in
chapter 4)

One way to think of advice is that it overrides the captured join points, and in
fact, the exception declaration rules for advice actually do follow the Java specifi-
cation for overridden methods. Like overridden methods, advice:

■ Cannot declare that it may throw a checked exception that is not already
declared by the captured join point. For example, when your aspect is

Advice 87
implementing persistence, you are not allowed to declare that the advice
may throw SQLException unless the method that was captured by the join
point already declares that it throws it.

■ May omit a few exceptions declared by the captured join points.
■ May declare that it can throw more specific exceptions than those declared

by the captured join points.

Chapter 4 discusses the issue of dealing with additional checked exceptions in
more depth and shows a pattern for addressing the common situations.

3.2.6 Passing context from a join point to advice

Advice implementations often require access to data at the join point. For exam-
ple, to log certain operations, advice needs information about the method and
arguments of the operation. This information is called context. Pointcuts, there-
fore, need to expose the context at the point of execution so it can be passed to
the advice implementation. AspectJ provides the this(), target(), and args()
pointcuts to collect the context. You’ll recall that there are two ways to specify
each of these pointcuts: by using the type of the objects or by using ObjectIden-
tifier, which simply is the name of the object. When context needs to be passed
to the advice, you use the form of the pointcuts that use ObjectIdentifier.

 In a pointcut, the object identifiers for the collected objects must be specified
in the first part of the advice—the part before the colon—in much the same way
you would specify method arguments. For example, in figure 3.4, the anonymous
pointcut in the before advice collects all the arguments to the method executions
associated with it.

Figure 3.4 Passing an executing object and an argument context
from the join point to the advice body. The target object in this case is
captured using the target() pointcut, whereas the argument value
is captured using the args() pointcut. The current execution object
can be captured in the same way using this() instead of target().

88 CHAPTER 3
AspectJ: syntax basics
Figure 3.4 shows the context being passed between an anonymous pointcut and
the advice. The target() pointcut collects the objects on which the credit()
method is being invoked, whereas the args() pointcut captures the argument to
the method. The part of the advice before the colon specifies the type and name
for each of the captured arguments. The body of the advice uses the collected con-
text in the same way that the body of a method would use the parameters passed to
it. The object identifiers in the previous code snippet are account and amount.

 When you use named pointcuts, those pointcuts themselves must collect the
context and pass it to the advice. Figure 3.5 shows the collection of the same
information as in figure 3.4, but uses named pointcuts to capture the context and
make it available to the advice.

 The code in figure 3.5 is functionally identical to that in 3.4, but unlike figure
3.4, we use a named pointcut. The pointcut creditOperation(), besides match-
ing join points, collects the context so that the advice can use it. We collect the
target object and the argument to the credit() operation. Note that the pointcut
itself declares the type and name of each collected element, much like a method
call. In the advice to this pointcut, the first part before the colon is unchanged
from figure 3.4. The pointcut definition simply uses the earlier defined pointcut.
Note how the names of the arguments in the first part of the advice match those
in the pointcut definition.

 Let’s look at some more examples of passing context. In figure 3.6, an after
returning advice captures the return value of a method.

Figure 3.5 Passing an executing object and an argument captured by a named
pointcut. This code snippet is functionally equivalent to figure 3.4, but achieves
it using a named pointcut. For the advice to access the join point’s context, the
pointcut itself must collect the context, as opposed to the advice collecting the
context when using anonymous pointcuts.

Advice 89
In figure 3.6, we capture the return value of DriverManager.getConnection() by
specifying the type and the name of the return object in the returning() part of the
advice specification. We can use the return object in the advice body just like any
other collected context. In this example, the advice simply prints the return value.

 In figure 3.7, we capture the exception object thrown by any method that
declares that it can throw RemoteException by specifying the type and name of the
exception to the throwing() part of the advice specification. Much like the return
value and any other context, we can use this exception object in the advice body.

 Note that thisJoinPoint is a special type of variable that carries join point con-
text information. We will look at these types of variables in detail in chapter 4.

3.2.7 Returning a value from around advice
Each around advice must declare a return value (which could be void). It is typical
to declare the return type to match the return type of the join points that are
being advised. For example, if a set of methods that are each returning an integer
were advised, you would declare the advice to return an integer. For a field-read
join point, you would match the advice’s return type to the accessed field’s type.

Figure 3.6 Passing a return object context to an advice body. The return
object is captured in returning() by specifying the type and object ID.

Figure 3.7 Passing a thrown exception to an advice body. The
exception object is captured in throwing() by specifying the type and
object ID. The special variables such as thisJoinPoint are accessed
in a similar manner to this inside an instance method.

90 CHAPTER 3
AspectJ: syntax basics
 Invoking proceed() returns the value returned by the join point. Unless you
need to manipulate the returned value, around advice will simply return the
value that was returned by the proceed() statement within it. If you do not
invoke proceed(), you will still have to return a value appropriate for the
advice’s logic.

 There are cases when an around advice applies to join points with different
return types. For example, if you advise all the methods needing transaction sup-
port, the return values of all those methods are likely to be different. To resolve
such situations, the around advice may declare its return value as Object. In
those cases, if around returns a primitive type after it calls proceed(), the primi-
tive type is wrapped in its corresponding wrapper type and performs the oppo-
site, unwrapping after returning from the advice. For instance, if a join point
returns an integer and the advice declares that it will return Object, the integer
value will be wrapped in an Integer object and it will be returned from the
advice. When such a value is assigned, the object is first unwrapped to an integer.
Similarly, if a join point returns a non-primitive type, appropriate typecasts are
performed before the return value is assigned. The scheme of returning the
Object type works even when a captured join point returns a void type.

3.2.8 An example using around advice: failure handling
Let’s look at an example that uses around advice to handle system failures. In a
distributed environment, dealing with a network failure is often an important
task. If the network is down, clients often reattempt operations. In the following
example, we examine how an aspect with around advice can implement the func-
tionality to handle a network failure.

 In listing 3.1, we simulate the network and other failures by simply making
the method throw an exception randomly.

import java.rmi.RemoteException;

public class RemoteService {
 public static int getReply() throws RemoteException {
 if(Math.random() > 0.25) {
 throw new RemoteException("Simulated failure occurred");
 }
 System.out.println("Replying");
 return 5;
 }
}

Listing 3.1 RemoteService.java

Advice 91
The getReply() method simulates the service offered. By checking against a ran-
domly generated number, it simulates a failure resulting in an exception (statisti-
cally, the method will fail approximately 75 percent of the time—a really high
failure rate!). When it does not fail, it prints a message and returns 5.

 Next let’s write a simple client (listing 3.2) that invokes the only method in
RemoteService.

public class RemoteClient {
 public static void main(String[] args) throws Exception {
 int retVal = RemoteService.getReply();
 System.out.println("Reply is " + retVal);
 }
}

Now let’s write an aspect to handle failures by reattempting the operation three
times before giving up and propagating the failure to the caller (listing 3.3).

import java.rmi.RemoteException;

public aspect FailureHandlingAspect {
 final int MAX_RETRIES = 3;

 Object around() throws RemoteException
 : call(* RemoteService.get*(..) throws RemoteException) {
 int retry = 0;
 while(true){
 try{
 return proceed();
 } catch(RemoteException ex){
 System.out.println("Encountered " + ex);
 if (++retry > MAX_RETRIES) {
 throw ex;
 }
 System.out.println("\tRetrying...");
 }
 }
 }
}

We declare that the around advice will return Object to accommodate the poten-
tial different return value types in the captured join points. We also declare that

Listing 3.2 RemoteClient.java

Listing 3.3 FailureHandlingAspect.java

Method part
of advice b

 cPointcut
(anonymous)

part of advice

 d Execution of
captured
join point

 b

92 CHAPTER 3
AspectJ: syntax basics
it may throw RemoteException to allow the propagating of any exception thrown
by the execution of captured join points.
The pointcut part of the advice uses an anonymous pointcut to capture all the
getter methods in RemoteService that throw RemoteException.
We simply return the value returned by the invocation of proceed(). Although
the join point is returning an integer, AspectJ will take care of wrapping and
unwrapping the logic.

When we compile and run the program, we get output similar to the following:

> ajc RemoteService.java RemoteClient.java FailureHandlingAspect.java
> java RemoteClient
Encountered java.rmi.RemoteException: Simulated failure occurred
 Retrying...
Encountered java.rmi.RemoteException: Simulated failure occurred
 Retrying...
Replying
Reply is 5

The output shows a few failures, retries, and eventual success. (Your output may
be a little different due to the randomness introduced.) It also shows the correct
assignment to the retVal member in the RemoteClient class, even though the
advice returned the Object type.

3.2.9 Context collection example: caching

The goal of this example is to understand how to collect context in arguments,
execution objects, and return values. First, we write a method for a simple facto-
rial computation, and then we write an aspect to cache the computed value for
later use. We want to insert a result into the cache for values passed on to only
nonrecursive calls (to limit the amount of caching). Before any calls to the facto-
rial() method, including the recursive ones, we check the cache and print the
value if a precomputed value is found. Otherwise, we proceed with the normal
computation flow. Let’s start with creating the factorial computation in
listing 3.4.

import java.util.*;

public class TestFactorial {
 public static void main(String[] args) {
 System.out.println("Result: " + factorial(5) + "\n");
 System.out.println("Result: " + factorial(10) + "\n");
 System.out.println("Result: " + factorial(15) + "\n");

 c

 d

Listing 3.4 TestFactorial.java: factorial computation

Advice 93
 System.out.println("Result: " + factorial(15) + "\n");
 }

 public static long factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
 }
}

Now let’s write the aspect to optimize the factorial computation by caching the
computed value for later use, as shown in listing 3.5.

import java.util.*;

public aspect OptimizeFactorialAspect {
 pointcut factorialOperation(int n) :
 call(long *.factorial(int)) && args(n);

 pointcut topLevelFactorialOperation(int n) :
 factorialOperation(n)
 && !cflowbelow(factorialOperation(int));

 private Map _factorialCache = new HashMap();

 before(int n) : topLevelFactorialOperation(n) {
 System.out.println("Seeking factorial for " + n);
 }

 long around(int n) : factorialOperation(n) {
 Object cachedValue = _factorialCache.get(new Integer(n));
 if (cachedValue != null) {
 System.out.println("Found cached value for " + n
 + ": " + cachedValue);
 return ((Long)cachedValue).longValue();
 }
 return proceed(n);
 }

 after(int n) returning(long result)
 : topLevelFactorialOperation(n) {
 _factorialCache.put(new Integer(n), new Long(result));
 }
}

Listing 3.5 OptimizeFactorialAspect.java: aspect for caching results

Capturing context
using args()

 b

Capturing context
from another
pointcut

 c

Using pointcut’s
context

 d

Returning primitive
from around advice

 e

Passing along context
to proceed()

 f

Capturing
return value

 g

94 CHAPTER 3
AspectJ: syntax basics
The factorialOperation() pointcut captures all calls to the factorial() method.
It also collects the argument to the method.
The topLevelFactorialOperation() pointcut captures all nonrecursive calls to
the factorial() method. It captures the context available in any factorialOper-
ation() pointcut it uses. See figure 3.5 for a graphical representation of captur-
ing context using named pointcuts.
The before advice logs the nonrecursive factorial() method invocation. In the
log message, it uses the collected context.
The around advice to any factorial() method invocation also uses the con-
text. It declares that it will return a long matching the return type of the
advised join point.
The around advice passes the captured context to proceed(). Recall that the
number and type of arguments to proceed() must match the advice itself.
The after returning advice collects the return value by specifying its type and
identifier in the returning() part. It then uses the return value as well as the
context collected from the join point to update the cache.

When we compile and run the code, we get the following output:

> ajc TestFactorial.java OptimizeFactorialAspect.java
> java TestFactorial
Seeking factorial for 5
Result: 120

Seeking factorial for 10
Found cached value for 5: 120
Result: 3628800

Seeking factorial for 15
Found cached value for 10: 3628800
Result: 1307674368000

Seeking factorial for 15
Found cached value for 15: 1307674368000
Result: 1307674368000

As soon as a cached value is found, the factorial computation uses that value
instead of continuing with the recursive computation. For example, while comput-
ing a factorial for 15, the computation uses a pre-cached factorial value for 10.

NOTE It seems that you could simply modify the Test.factorial() method
to insert code for caching optimization, especially since only one meth-
od needs to be modified. However, such an implementation will tangle
the optimization logic with factorial computation logic. With conventional

 b

 c

 d

 e

 f

 g

Static crosscutting 95
refactoring techniques, you can limit the inserted code to a few lines.
Using an aspect, you refactor the caching completely out of the core fac-
torial computation code. You can now modify the caching strategy with-
out even touching the factorial() method.

3.3 Static crosscutting

In AOP, we often find that in addition to affecting dynamic behavior using
advice, it is necessary for aspects to affect the static structure in a crosscutting
manner. While dynamic crosscutting modifies the execution behavior of the pro-
gram, static crosscutting modifies the static structure of the types—the classes,
interfaces, and other aspects—and their compile-time behavior. There are four
broad classifications of static crosscutting: member introduction, type-hierarchy
modification, compile-time error and warning declaration, and exception soft-
ening. In this section, we study the first three kinds. Understanding exception
softening requires additional design considerations for effective use, and we will
visit that along with other similar topics in chapter 4.

3.3.1 Member introduction

Aspects often need to introduce data members and methods into the aspected
classes. For example, in a banking system, implementing a minimum balance
rule may require additional data members corresponding to a minimum balance
and a method for computing the available balance. AspectJ provides a mecha-
nism called introduction to introduce such members into the specified classes and
interfaces in a crosscutting manner.

 The code snippet in listing 3.6 introduces the _minimumBalance field and the
getAvailableBalance() method to the Account class. The after advice sets the
minimum balance in SavingsAccount to 25.

public aspect MinimumBalanceRuleAspect {
 private float Account._minimumBalance;

 public float Account.getAvailableBalance() {
 return getBalance() - _minimumBalance;
 }

 after(Account account) :
 execution(SavingsAccount.new(..)) && this(account) {
 account._minimumBalance = 25;
 }

Listing 3.6 MinimumBalanceRuleAspect.java

Introducing a data
member

Introducing a
method

Using the introduced
data member

96 CHAPTER 3
AspectJ: syntax basics
 before(Account account, float amount)
 throws InsufficientBalanceException :
 execution(* Account.debit())
 && this(account) && args(amount) {
 if (account.getAvailableBalance() < amount) {
 throw new InsufficientBalanceException(
 "Insufficient available balance");
 }
 }
}

In the aspect in listing 3.6, we introduce a member _minimumBalance of type float
into the Account class. Note that introduced members can be marked with an access
specifier, as we have marked _minimumBalance with private access. The access rules
are interpreted with respect to the aspect doing the introduction. For example, the
members marked private are accessible only from the introducing aspect.

 You can also introduce data members and methods with implementation into
interfaces; this will provide a default behavior to the implementing classes. As
long as the introduced behavior suffices for your implementation needs, this
prevents the duplication of code in each class, since the introduction of the data
members and methods effectively adds the behavior to each implementing class.
In chapter 8, we will look more closely at doing this.

3.3.2 Modifying the class hierarchy

A crosscutting implementation often needs to affect a set of classes or interfaces
that share a common base type so that certain advice and aspects will work only
through the API offered by the base type. The advice and aspects will then be
dependent only on the base type instead of application-specific classes and inter-
faces. For example, a cache-management aspect may declare certain classes to
implement the Cacheable interface. The advice in the aspect then can work only
through the Cacheable interface. The result of such an arrangement is the
decoupling of the aspect from the application-specific class, thus making the
aspect more reusable. With AspectJ, you can modify the inheritance hierarchy of
existing classes to declare a superclass and interfaces of an existing class or inter-
face as long as it does not violate Java inheritance rules. The forms for such a
declaration are:

declare parents : [ChildTypePattern] implements [InterfaceList];

and
declare parents : [ChildTypePattern] extends [Class or InterfaceList];

Using the introduced
method

Static crosscutting 97
For example, the following aspect declares that all classes and interfaces in the
entities package that have the banking package as the root are to implement
the Identifiable interface:

aspect AccountTrackingAspect {
 declare parents : banking..entities.* implements Identifiable;

 ... tracking advices
}

The declaration of parents must follow the regular Java object hierarchy
rules. For example, you cannot declare a class to be the parent of an inter-
face. Similarly, you cannot declare parents in such a way that it will result in
multiple inheritance.

3.3.3 Introducing compile-time errors and warning

AspectJ provides a static crosscutting mechanism to declare compile-time errors
and warnings based on certain usage patterns. With this mechanism, you can
implement behavior similar to the #error and #warning preprocessor directives
supported by some C/C++ preprocessors, and you can also implement even
more complex and powerful directives.

 The declare error construct provides a way to declare a compile-time error
when the compiler detects the presence of a join point matching a given point-
cut. The compiler then issues an error, prints the given message for each
detected usage, and aborts the compilation process:

declare error : <pointcut> : <message>;

Similarly, the declare warning construct provides a way to declare a compile-
time warning, but does not abort the compilation process:

declare warning : <pointcut> : <message>;

Note that since these declarations affects compile-time behavior, you must use only
statically determinable pointcuts in the declarations. In other words, the pointcuts
that use dynamic context to select the matching join points—this(), target(),
args(), if(), cflow(), and cflowbelow()—cannot be used for such a declaration.

 A typical use of these constructs is to enforce rules, such as prohibiting calls to
certain unsupported methods, or issuing a warning about such calls. The follow-
ing code example causes the AspectJ compiler to produce a compile-time error if
the join point matching the callToUnsafeCode() pointcut is found anywhere in
the code that is being compiled:

98 CHAPTER 3
AspectJ: syntax basics
declare error : callToUnsafeCode()
: "This third-party code is known to result in crash";

The following code is similar, except it produces a compile-time warning instead
of an error:

declare warning : callToBlockingOperations()
: "Please ensure you are not calling this from AWT thread";

We have more examples of how to use compile-time errors and warnings for pol-
icy enforcement in chapter 6.

3.4 Tips and tricks

Here are some things to keep in mind as you are learning AspectJ. These simple
tips will make your aspects simpler and more efficient:

■ Understand the difference between the AspectJ compiler and a Java compiler—One
of the most common misconceptions that first-time users have is that an
AspectJ compiler works just like a Java compiler. However, unlike a Java
compiler, which can compile either individual files or a set of files together
without any significant difference, the AspectJ complier must compile all
of the related classes and aspects at the same time. This means that you
need to pass all the source files to the compiler together. The latest com-
piler version has additional options for weaving these files into JAR files.
With those options, you also need to pass all JAR files together into a single
invocation of the compiler. See appendix A for more details.

■ Use a consistent naming convention—To get the maximum benefit from a wildcard-
pointcut, it is important that you follow a naming convention consistently. For
example, if you follow the convention of naming all the methods changing
the state of an object to start with set, then you can capture all the state-
change methods using set*. A consistent package structure with the right
granularity will help capture all the classes inside a package tree.

■ Use after returning when appropriate—When designing the after advice, con-
sider using after returning instead of after, as long as you don’t need to
capture an exception-throwing case. The implementation for the after
advice without returning needs to use a try/catch block. There is a cost
associated with such a try/catch block that you can avoid by using an after
returning advice.

■ Don’t be misled by &&—The natural language reading of pointcuts using &&
often misleads developers who are new to AspectJ. For example, the point-

Summary 99
cut publicMethods() && privateMethods() won’t match any method even
though the natural reading would suggest “public and private methods.”
This is because a method can have either private access or public access,
but not both. The solution is simple: use || instead to match public or pri-
vate methods.

Chapter 8 presents a set of idioms that will help you avoid potential troubles as
you begin using AspectJ.

3.5 Summary

AspectJ introduces AOP programming to Java by adding constructs to support
dynamic and static crosscutting. Dynamic crosscutting modifies the behavior of
the modules, while static crosscutting modifies the structure of the modules.
Dynamic crosscutting consists of pointcut and advice constructs. AspectJ exposes
the join points in a system through pointcuts. The support of wildcard matching
in pointcuts offers a powerful yet simple way to capture join points without
knowing the full details. The advice constructs provide a way to express actions
at the desired join points. Static crosscutting, which can be used alone or in sup-
port of dynamic crosscutting, includes the constructs of member introduction,
type hierarchy modification, and compile-time declarations. The overall result is
a simple and programmer-friendly language supporting AOP in Java. At this
point, if you haven’t already done so, you may want to download and install the
AspectJ compiler and tools. Appendix A explains where to find the compiler and
how to install it.

 Together, this chapter and the previous one should get you started on
AspectJ, but for complex programs, you will need to learn a few more concepts,
such as exception softening and aspect association. We present these concepts
and more in the next chapter.

4Advanced AspectJ
This chapter covers
■ Using reflection support to access join point

information
■ Using aspect precedence to coordinate multiple

aspects
■ Creating reusable aspects with aspect

association
■ Exception softening and privileged aspects
100

Accessing join point information 101
The core concepts presented earlier equipped you with basic AspectJ constructs so
that you can begin to implement crosscutting functionality in your system. For
complex applications involving the creation of reusable aspects and the use of mul-
tiple aspects, you will need advanced AspectJ concepts and constructs to provide
you with additional options for design and implementation.

 This chapter introduces more advanced features of AspectJ, such as aspect
precedence and aspect association. Unlike the earlier chapters, where concepts
build on top of one another, this chapter contains a collection of constructs that
each stand alone.

4.1 Accessing join point information via reflection

Reflective support in AspectJ provides programmatic access to the static and
dynamic information associated with the join points. For example, using reflec-
tion, you can access the name of the currently advised method as well as the argu-
ment objects to that method. The dynamic context that can be captured using
reflective support is similar to that captured using this(), target(), and args()
pointcuts—only the mechanism to obtain the information is different. The most
common use of this reflective information is in aspects that implement logging
and similar functionaliy. We have already used simple reflective support to write
the JoinPointTraceAspect in chapter 2. In this section, we examine the details of
reflective support.

NOTE While you can always use reflection to obtain the dynamic context, the
preferred way is to use the this(), target(), and args() pointcuts.
The reflective way of accessing information has poor performance, lacks
static type checking, and is cumbersome to use. However, there are
times when you need to use reflection because you need to access dy-
namic context and little information is available or required about the
advised join points. For instance, you cannot easily use an args()
pointcut to capture arguments for all logged methods, since each meth-
od may take a different number and type of arguments. Further, the
logging aspect’s advice doesn’t need to care about the type of the argu-
ment objects because the only interaction of the logging aspect with
those objects is to print them.

AspectJ provides reflective access by making three special objects available in
each advice body: thisJoinPoint, thisJoinPointStaticPart, and thisEnclosing-
JoinPointStaticPart. These objects are much like the special variable this that

102 CHAPTER 4
Advanced AspectJ
is available in each instance method in Java to provide access to the execution
object. The information contained in these three objects is of two types: dynamic
information and static information:

■ Dynamic information consists of the kind of information that changes with
each invocation of the same join points. For example, two different calls to
the method Account.debit() will probably have different account objects
and debit amounts.

■ Static information is information that does not change between the multi-
ple executions. For example, the name and source location of a method
remain the same during different invocations of the method.

Each join point provides one object that contains dynamic information and two
objects that contain static information about the join point and its enclosing join
point. Let’s examine the information in each of these special objects. We will
examine the API to access the information from these objects in section 4.1.1:

■ thisJoinPoint—This object of type JoinPoint contains the dynamic infor-
mation of the advised join point. It gives access to the target object, the
execution object, and the method arguments. It also provides access to the
static information for the join point, using the getStaticPart() method.
You use thisJoinPoint when you need dynamic information related to the
join point. For example, if you want to log the execution object and
method arguments, you would use the thisJoinPoint object.

■ thisJoinPointStaticPart—This object of type JoinPoint.StaticPart con-
tains the static information about the advised join point. It gives access to
the source location, the kind (method-call, method-execution, field-set,
field-get, and so forth), and the signature of the join point. You use this-
JoinPointStaticPart when you need the structural context of the join
point, such as its name, kind, source location, and so forth. For example, if
you need to log the name of the methods that are executed, you would use
the thisJoinPointStaticPart object.

■ thisEnclosingJoinPointStaticPart—This object of type JoinPoint.Stat-
icPart contains the static information about the enclosing join point,
which is also refered to as the enclosing context. The enclosing context of a
join point depends on the kind of join point. For example, for a method-
call join point, the enclosing join point is the execution of the caller
method, whereas for an exception-handler join point, the enclosing join
point is the method that surrounds the catch block. You use the thisEn-

Accessing join point information 103
closingJoinPointStaticPart object when you need the context informa-
tion of the join point’s enclosing context. For example, while logging an
exception, you can log the enclosing context information as well.

4.1.1 The reflective API

The reflective API in AspectJ is a set of interfaces that together form the pro-
grammatic access to the join point information. These interfaces provide access
to dynamic information, static information, and various join point signatures. In
this section, we examine these interfaces and their relationship with each other.
Figure 4.1 shows the structural relationship between the interfaces of the reflec-
tive API in a UML class diagram.

Figure 4.1 The structural relationship among various interfaces supporting reflection

104 CHAPTER 4
Advanced AspectJ
The package org.aspectj.lang contains three interfaces and a subpackage.
These modules provide support to access all of the join point’s information.
The JoinPoint interface models dynamic information associated with an
advised join point. A JoinPoint object also contains an object of type Join-
Point.StaticPart that can be accessed through the method getStaticPart().
This object provides access to the join point’s static information. This static
information consists of the join point’s “kind,” signature, and source code loca-
tion. A JoinPoint.StaticPart object is composed of a String object (that repre-
sents the “kind”), a Signature object, and a SourceLocation object. The
Signature object provides access to the join point’s signature, and the SourceLo-
cation object provides access to the join point’s source-code location. The sub-
package org.aspectj.lang.reflect contains interfaces for various join point
signatures connected through an inheritance relationship, as well as the Source-
Location interface.

NOTE The purpose of the API discussion in this section is to give an overview.
For more detailed information, refer to the AspectJ API documentation.

The org.aspectj.lang.JoinPoint interface
This interface provides access to the dynamic information associated with the
currently advised join point. It specifies methods for obtaining the currently exe-
cuting object, target object, and arguments, as well as the static information:

■ The getThis() method gives access to the currently executing object,
whereas the getTarget() method is used for obtaining the target object for
a called join point. The getThis() method returns null for join points
occurring in a static method, whereas getTarget() returns null for the
calls to static methods.

■ The getArgs() method gives access to arguments for the join point. For
method and constructor join points, getArgs() simply returns an array of
each element referring to each argument in the order they are supplied to
the join point. Each primitive argument is wrapped in the corresponding
wrapper type. For example, an int argument will be wrapped inside an
Integer object. For field-set join points, the new value of the field is avail-
able in getArgs(). For field-get join points, getArgs() returns an empty
array, since there is no argument for the operation. Similarly, for handler
execution, getArgs() returns the exception object.

Accessing join point information 105
Besides providing access to the dynamic information, the JoinPoint interface
offers direct access to the static information of the advised join point. There are
two ways to obtain the static information through the thisJoinPoint variable of
type JoinPoint:

■ By using direct methods (getKind(), getSignature(), and getSourceLoca-
tion()) with the thisJoinPoint object. The next section discusses these
methods since they are also defined in the JoinPoint.StaticPart interface,
where they perform identical tasks.

■ Through the object obtained with getStaticPart(), which contains the
same information as thisJoinPointStaticPart.

The org.aspectj.lang.JoinPoint.StaticPart interface
This interface allows the API to access the static information associated with the
currently advised join point. It specifies methods to obtain the kind of join point,
the join point signature, and the source location information corresponding to
code for the join point:

■ The method getKind() returns the kind of join point. The method returns
a string such as “method-call”, “method-execution”, or “field-set” that
indicates the kind of the advised join point. The JoinPoint interface
defines one constant for each of the available kinds of join points.

■ The method getSignature() returns a Signature object for the executing
join point. Depending on the nature of the join point, it can be an instance
of one of the subinterfaces shown in figure 4.1. While the base Signature
interface allows access to common information such as the name, the
declaring type, and so forth, you will have to cast the object obtained
through getSignature() to a subinterface if you need finer information
(the type of method argument, its return type, its exception, and so on).

■ The method getSourceLocation(), which returns a SourceLocation object,
allows access to the source location information corresponding to the join
point. The SourceLocation interface contains a method for accessing the
source filename, line number, and so forth.

Each of the JoinPoint, JoinPoint.StaticPart, and Signature interfaces specifies
three methods for obtaining string representation of the object with varied
descriptiveness: toString() (which suffices for most debug logging needs),
toLongString(), and toShortString().

106 CHAPTER 4
Advanced AspectJ
NOTE The thisJoinPoint object is allocated every time an advice is executed
to capture the current dynamic context, whereas the thisJoinPoint-
StaticPart is allocated only once per join point during the execution
of a program. Therefore, using dynamic information is expensive com-
pare to static information. You should be aware of this fact while design-
ing aspects such as logging.

Also note that the static information obtained through both this-
JoinPoint.getStaticPart() and thisJoinPointStaticPart is the
same. In many situations, such as low-overhead logging and profiling,
you need to gather only static, and not dynamic, information about the
join point. In those cases, you should use the thisJoinPointStatic-
Part object directly instead of the object obtained through thisJoin-
Point.getStaticPart(). The first method does not require allocation
of a separate object (thisJoinPoint) for each join point execution and
thus is a lot more efficient.

4.1.2 Using reflective APIs
To demonstrate the use of reflective APIs, let’s modify the simple tracing aspect
that we wrote in chapter 2. If you recall, JoinPointTraceAspect used simple
reflective support to print the information for all the join points as the code in
the classes executed. We will use the same unmodified classes, Account, Insufficient-
BalanceException, and SavingsAccount, from listings 2.5, 2.6, and 2.7. The
abstract Account class provides the methods for debiting, crediting, and querying
the account balance. The SavingsAccount class extends Account to a savings
account. We will modify the versions of the Test class (from listing 2.8) and Join-
PointTraceAspect (from listing 2.9) so that our new example will use the reflection
API to log detailed messages that show information not only about the methods
invoked, but also about the objects involved in each method invocation.

 To limit the output, we first remove the call to the debit() method in the Test
program as shown in listing 4.1.

public class Test {
 public static void main(String[] args) {
 SavingsAccount account = new SavingsAccount(12456);
 account.credit(100);
 }
}

Listing 4.1 Test.java

Accessing join point information 107
Now let’s modify the JoinPointTraceAspect aspect, as shown in listing 4.2.
Instead of printing the string representation of thisJoinPoint that showed
only the signature and kind of the join point, we want it to print the join
point’s dynamic information, which is the this object, the target object, and
the arguments at the join point, as well as its static information, which consists
of the signature, the kind, and the source location of the join point in the
before advice. We will also limit the trace join points for the purpose of limit-
ing the output.

import org.aspectj.lang.*;
import org.aspectj.lang.reflect.*;

public aspect JoinPointTraceAspect {
 private int _indent = -1;

 pointcut tracePoints() :
 !within(JoinPointTraceAspect)
 && !call(*.new(..)) && !execution(*.new(..))
 && !initialization(*.new(..)) && !staticinitialization(*);

 before() : tracePoints() {
 _indent++;
 println("========= " + thisJoinPoint + " ===========");
 println("Dynamic join point information:");
 printDynamicJoinPointInfo(thisJoinPoint);
 println("Static join point information:");
 printStaticJoinPointInfo(thisJoinPointStaticPart);
 println("Enclosing join point information:");
 printStaticJoinPointInfo(thisEnclosingJoinPointStaticPart);
 }

 after() : tracePoints() {
 _indent--;
 }

 private void printDynamicJoinPointInfo(JoinPoint joinPoint) {
 println("This: " + joinPoint.getThis() +
 " Target: " + joinPoint.getTarget());
 StringBuffer argStr = new StringBuffer("Args: ");
 Object[] args = joinPoint.getArgs();
 for (int length = args.length, i = 0; i < length; ++i) {
 argStr.append(" [" + i + "] = " + args[i]);
 }
 println(argStr);
 }

Listing 4.2 JoinPointTraceAspect.java

Defining trace
join points

 b

 cObtaining
reflective
access objects

Printing
dynamic
information

 d

108 CHAPTER 4
Advanced AspectJ
 private void printStaticJoinPointInfo(
 JoinPoint.StaticPart joinPointStaticPart) {
 println("Signature: " + joinPointStaticPart.getSignature()
 + " Kind: " + joinPointStaticPart.getKind());
 SourceLocation sl = joinPointStaticPart.getSourceLocation();
 println("Source location: " +
 sl.getFileName() + ":" + sl.getLine());
 }

 private void println(Object message) {
 for (int i = 0, spaces = _indent * 2; i < spaces; ++i) {
 System.out.print(" ");
 }
 System.out.println(message);
 }
}

The tracePoints() pointcut excludes the join points inside the aspect itself by
using the !within() pointcut. Without the pointcut, the method calls within the
advice in the aspect will get advised. When the advice executes for the first
method, it will encounter a method call inside itself, and the advice will be called
again. This will begin the infinite recursion. To limit the trace output, we also
exclude the join points for the call and execution of constructors as well as object
and class initialization.
The advice body passes the reflective objects to the helper methods to print
information contained in them.
The printDynamicJoinPointInfo() method prints the dynamic information
passed in the argument object. We first print the current execution object and
the method target object by using getThis() and getTarget(), respectively. Note
that getThis() will return null for the static method execution, whereas getTar-
get() will return null for the static method call. The getArgs() method returns
an object array with each primitive argument wrapped in a corresponding type.
For example, our float argument is wrapped in a Float object.
The printStaticJoinPointInfo() method prints static information passed in the
argument object. We print the signature of the join point and the kind of join
point. We also print the source location information obtained through get-
SourceLocation(), returning a SourceLocation object that contains such infor-
mation as the source file, the declaring class, and the line number.

When we run the program, we see the following output. You can see how
getThis(), getTarget(), and getArgs() behave for different kinds of join points:

Printing
static
information

 e

 b

 c

 d

 e

Accessing join point information 109
> ajc *.java
> java Test
========= execution(void Test.main(String[])) ===========
Dynamic join point information:
This: null Target: null
Args: [0] = [Ljava.lang.String;@1eed786
Static join point information:
Signature: void Test.main(String[]) Kind: method-execution
Source location: Test.java:3
Enclosing join point information:
Signature: void Test.main(String[]) Kind: method-execution
Source location: Test.java:3
 ========= preinitialization(SavingsAccount(int)) ===========
 Dynamic join point information:
 This: null Target: null
 Args: [0] = 12456
 Static join point information:
 Signature: SavingsAccount(int) Kind: preinitialization
 Source location: SavingsAccount.java:5
 Enclosing join point information:
 Signature: SavingsAccount(int) Kind: preinitialization
 Source location: SavingsAccount.java:5
 ========= preinitialization(Account(int)) ===========
 Dynamic join point information:
 This: null Target: null
 Args: [0] = 12456
 Static join point information:
 Signature: Account(int) Kind: preinitialization
 Source location: Account.java:7
 Enclosing join point information:
 Signature: Account(int) Kind: preinitialization
 Source location: Account.java:7
 ========= set(int Account._accountNumber) ===========
 Dynamic join point information:
 This: SavingsAccount@1ad086a Target: SavingsAccount@1ad086a
 Args: [0] = 12456
 Static join point information:
 Signature: int Account._accountNumber Kind: field-set
 Source location: Account.java:8
 Enclosing join point information:
 Signature: Account(int) Kind: constructor-execution
 Source location: Account.java:8
 ========= call(void Account.credit(float)) ===========
 Dynamic join point information:
 This: null Target: SavingsAccount@1ad086a
 Args: [0] = 100.0
 Static join point information:
 Signature: void Account.credit(float) Kind: method-call
 Source location: Test.java:4
 Enclosing join point information:
 Signature: void Test.main(String[]) Kind: method-execution

110 CHAPTER 4
Advanced AspectJ
 Source location: Test.java:3
 ========= execution(void Account.credit(float)) ===========
 Dynamic join point information:
 This: SavingsAccount@1ad086a Target: SavingsAccount@1ad086a
 Args: [0] = 100.0
 Static join point information:
 Signature: void Account.credit(float) Kind: method-execution
 Source location: Account.java:12
 Enclosing join point information:
 Signature: void Account.credit(float) Kind: method-execution
 Source location: Account.java:12
 ========= call(float Account.getBalance()) ===========
 Dynamic join point information:
 This: SavingsAccount@1ad086a Target: SavingsAccount@1ad086a
 Args:
 Static join point information:
 Signature: float Account.getBalance() Kind: method-call
 Source location: Account.java:12
 Enclosing join point information:
 Signature: void Account.credit(float) Kind: method-execution
 Source location: Account.java:12
 ========= execution(float Account.getBalance()) ===========
 Dynamic join point information:
 This: SavingsAccount@1ad086a Target: SavingsAccount@1ad086a
 Args:
 Static join point information:
 Signature: float Account.getBalance() Kind: method-execution
 Source location: Account.java:26
 Enclosing join point information:
 Signature: float Account.getBalance() Kind: method-execution
 Source location: Account.java:26
 ========= get(float Account._balance) ===========
 Dynamic join point information:
 This: SavingsAccount@1ad086a Target: SavingsAccount@1ad086a
 Args:
 Static join point information:
 Signature: float Account._balance Kind: field-get
 Source location: Account.java:26
 Enclosing join point information:
 Signature: float Account.getBalance() Kind: method-execution
 Source location: Account.java:26
 ========= call(void Account.setBalance(float)) ===========
 Dynamic join point information:
 This: SavingsAccount@1ad086a Target: SavingsAccount@1ad086a
 Args: [0] = 100.0
 Static join point information:
 Signature: void Account.setBalance(float) Kind: method-call
 Source location: Account.java:12
 Enclosing join point information:
 Signature: void Account.credit(float) Kind: method-execution
 Source location: Account.java:12

Aspect precedence 111
 ========= execution(void Account.setBalance(float)) ===========
 Dynamic join point information:
 This: SavingsAccount@1ad086a Target: SavingsAccount@1ad086a
 Args: [0] = 100.0
 Static join point information:
 Signature: void Account.setBalance(float) Kind: method-execution
 Source location: Account.java:30
 Enclosing join point information:
 Signature: void Account.setBalance(float) Kind: method-execution
 Source location: Account.java:30
 ========= set(float Account._balance) ===========
 Dynamic join point information:
 This: SavingsAccount@1ad086a Target: SavingsAccount@1ad086a
 Args: [0] = 100.0
 Static join point information:
 Signature: float Account._balance Kind: field-set
 Source location: Account.java:30
 Enclosing join point information:
 Signature: void Account.setBalance(float) Kind: method-execution
 Source location: Account.java:30

Notice in the output that getThis() returns null for method calls from the
main() method. This is because it will return null for join points in a static
method, as we mentioned in d of the discussion of listing 4.2.

 In a similar manner, you can build a quick logging functionality to get insight
into the program flow of your system. The use of dynamic information can
enhance your understanding of the system execution by logging the object and
parameter with each join point along with the static information. In chapter 5,
we provide a more detailed description of logging. In chapter 10, we use reflec-
tive information for creating authorization permission objects.

4.2 Aspect precedence

When a system includes multiple aspects, it’s possible that advice in more than
one aspect applies to a join point. In such situations, it may be important to con-
trol the order in which the advice is applied. To understand the need for control-
ling the advice execution order, let’s look at the example in listing 4.3. Consider
a class representing a home, with the methods of entering and exiting the home.

public class Home {
 public void enter() {
 System.out.println("Entering");
 }

Listing 4.3 Home.java

112 CHAPTER 4
Advanced AspectJ
 public void exit() {
 System.out.println("Exiting");
 }
}

Now let’s create a security aspect (listing 4.4) consisting of advice for engaging the
security system in the home when you exit and disengaging it when you enter.

public aspect HomeSecurityAspect {
 before() : call(void Home.exit()) {
 System.out.println("Engaging");
 }

 after() : call(void Home.enter()) {
 System.out.println("Disengaging");
 }
}

Another aspect (listing 4.5) handles conserving energy by switching the lights off
before you leave the home and switching them on after you enter.

public aspect SaveEnergyAspect {
 before() : call(void Home.exit()) {
 System.out.println("Switching off lights");
 }

 after() : call(void Home.enter()) {
 System.out.println("Switching on lights");
 }
}

Now let’s create a simple test (listing 4.6) to see the effects of multiple advice on
a join point.

public class TestHome {
 public static void main(String[] args) {
 Home home = new Home();

 home.exit();

Listing 4.4 HomeSecurityAspect.java

Listing 4.5 SaveEnergyAspect.java

Listing 4.6 TestHome.java: a simple test to see the effect of multiple advice on a join point

Aspect precedence 113
 System.out.println();

 home.enter();
 }
}

Now when we compile these files together and execute the Test program, we see
the following output:1

> ajc Home.java TestHome.java
 HomeSecurityAspect.java SaveEnergyAspect.java
> java TestHome
Switching off lights
Engaging
Exiting

Entering
Disengaging
Switching on lights

The exhibited behavior may not be desirable, considering that switching lights
off prior to securing the home may make you fumble in the dark. Also, trying to
disarm the security system without the lights on upon entry may cause similar
troubles, and any delay in disarming the system may result in calling security. So
the preferred sequence when entering the home is enter-switch on lights-disarm,
and while exiting, arm-switch off lights-exit. From the implementation perspective,
we would like:

1 The before advice in SaveEnergyAspect to run before the HomeSecurity-
Aspect before advice

2 The after advice in SaveEnergyAspect to run after the HomeSecurityAspect
after advice

In the next sections, we will study the rules and ways to control precedence.
Later we will apply this information to the previous problem to show how you
can achieve the correct advice ordering.

1 It is possible to get output that is different from that shown here, depending on several factors, includ-
ing the version of the AspectJ compiler you are using. The actual output may match the desired out-
put. Such matching, however, is purely accidental, since the precedence is arbitrarily determined
unless you specify the advice precedence.

➥

114 CHAPTER 4
Advanced AspectJ
4.2.1 Ordering of advice

As you have just seen, with multiple aspects present in a system, pieces of advice
in the different aspects can often apply to a single join point. When this hap-
pens, AspectJ uses the following precedence rules to determine the order in
which the advice is applied. Later, we will see how to control precedence:

■ The aspect with higher precedence executes its before advice on a join
point before the one with lower precedence.

■ The aspect with higher precedence executes its after advice on a join point
after the one with lower precedence.

■ The around advice in the higher-precedence aspect encloses the around
advice in the lower-precedence aspect. This kind of arrangement allows
the higher-precedence aspect to control whether the lower-precedence
advice will run at all by controlling the call to proceed(). In fact, if the
higher-precedence aspect does not call proceed() in its advice body, not
only will the lower-precedence aspects not execute, but the advised join
point also will not be executed.

Figure 4.2 illustrates the precedence rules.

Figure 4.2 Ordering the execution of advice and join points. The darker areas represent the
higher-precedence advice. The around advice could be thought of as the higher-precedence
advice running the lower-precedence advice in a nested manner.

Aspect precedence 115
WARNING In the absence of any special precedence control, the order in which the
advice is applied is unpredictable.

4.2.2 Explicit aspect precedence

It is often necessary to change the precedence of advice as it is applied to a join
point. AspectJ provides a construct—declare precedence—for controlling aspect
precedence. The declare precedence construct must be specified inside an
aspect. The construct takes the following form:

declare precedence : TypePattern1, TypePattern2, ..;

The result of this kind of declaration is that aspects matching the type pattern on
the left dominate the ones on the right, thus taking a higher precedence. In this
example, the precedence of TypePattern1 is higher than the precedence of
TypePattern2. Precedence ordering considers only the concrete aspects when
matching the type pattern and ignores all the abstract aspects. By controlling the
aspect precedence, you can control the order in which advice is applied to a
pointcut. For example, the following declaration causes AuthenticationAspect to
dominate AuthorizationAspect:

declare precedence : AuthenticationAspect, AuthorizationAspect;

Let’s use this declaration to correct the precedence between HomeSecurityAspect
and SaveEnergyAspect in the Home class example. Since we want to run the before
advice to arm before the before advice to switch off the lights, and the after
advice to disarm after the after advice to switch on the lights, we need Home-
SecurityAspect to dominate SaveEnergyAspect. We achieve this goal by writing
another aspect (listing 4.7) that declares the correct and explicit precedence
between the two.

public aspect HomeSystemCoordinationAspect {
 declare precedence: HomeSecurityAspect, SaveEnergyAspect;
}

Now when we compile our code and run the test program we see the follow-
ing output:

Listing 4.7 HomeSystemCoordinationAspect.java

116 CHAPTER 4
Advanced AspectJ
> ajc Home.java TestHome.java
 HomeSecurityAspect.java SaveEnergyAspect.java
 HomeSystemCoordinationAspect.java
> java TestHome
Engaging
Switching off lights
Exiting

Entering
Switching on lights
Disengaging

This is exactly what we wanted. We could have added the declare precedence
clause in either HomeSecurityAspect or SaveEnergyAspect and gotten the same
result. However, this kind of modification would require the creation of an unde-
sirable coupling between the two.

 Let’s examine more examples of the declare precedence clause to better
understand it. Since the clause expects a list of TypePatterns, we can use wild-
cards in aspect names. The following declaration causes all aspects whose names
start with Auth, such as AuthenticationAspect and AuthorizationAspect, to dom-
inate the PoolingAspect:

declare precedence : Auth*, PoolingAspect;

In this declaration, however, the precedence between two aspects starting with
Auth is unspecified. If controlling the precedence between two such aspects is
important, you will need to specify both aspects in the desired order.

 Since declare precedence takes a type list, you can specify a sequence of dom-
ination. For example, the following declaration causes aspects whose names start
with Auth to dominate both PoolingAspect and LoggingAspect, while also causing
PoolingAspect to dominate LoggingAspect:

declare precedence : Auth*, PoolingAspect, LoggingAspect;

It is common for certain aspects to dominate all other aspects. You can use a *
wildcard to indicate such an intention. The following declaration causes Authen-
ticationAspect to dominate all the remaining aspects in the system:

declare precedence : AuthenticationAspect, *;

It is also common for certain aspects to be dominated by all other aspects. You
can use a wildcard to achieve this as well. The following declaration causes Caching-
Aspect to have the lowest precedence:

declare precedence : *, CachingAspect;

➥
➥

Aspect precedence 117
It is an error if a single declare precedence clause causes circular dependency in
the ordering of aspect precedence. The following declaration will produce a
compile-time error since Auth* will match AuthenticationAspect, causing a cir-
cular dependency:

declare precedence : Auth*, PoolingAspect, AuthenticationAspect;

However, it is legal to specify a circular dependency causing precedence in two
different clauses. You can use this to enforce that two different, potentially con-
flicting or redundant aspects, such as two pooling aspects, share no join points.
You will get a compile-time error if the two aspects in question share a join point.
The following declarations will not produce an error unless PoolingAspect and
AuthenticationAspect share a join point:

declare precedence : AuthenticationAspect, PoolingAspect;
declare precedence : PoolingAspect, AuthenticationAspect;

You can include a declare precedence clause inside any aspect. A common usage
idiom is to add such clauses to a separate coordination aspect (such as the one
we used in the previous HomeSystemCoordinationAspect example) so that aspects
themselves are unaware of each other and need no modification to the core
aspects. Such a separation is particularly important for third-party, off-the-shelf
aspects where you may not have the control over source files you would need to
add such clauses. Separating precedence control also avoids the tangling of the
core functionality in the precedence relationship with other aspects. The follow-
ing snippet shows the use of a separate precedence-coordinating aspect in a
banking system:

aspect BankingAspectCoordinator {
 declare precedence : Auth*, PoolingAspect, LoggingAspect;
}

The precedence control offered by AspectJ is simple yet powerful, and is
immensely helpful for a complex system. You can now create multiple aspects
independently as well as use aspects developed by others without requiring mod-
ifications to any other aspect.

4.2.3 Aspect inheritance and precedence

Besides explicitly controlling aspect precedence using the declare precedence
construct, AspectJ implicitly determines the precedence of two aspects related by
a base-derived aspect relationship. The rule is simple: If the inheritance relates
two aspects, the derived aspect implicitly dominates the base aspect. Here’s an

118 CHAPTER 4
Advanced AspectJ
example to illustrate this rule. In listing 4.8, the TestPrecedence class sets up the
scenario to test the precedence in aspect inheritance by calling the perform()
method from the main() method:

public class TestPrecedence {
 public static void main(String[] args) {
 TestPrecedence test = new TestPrecedence();
 test.perform();
 }

 public void perform() {
 System.out.println("<performing/>");
 }
}

In listing 4.9, the abstract aspect SecurityAspect advises the perform() method
in the TestPrecedence class. The advice simply prints a message.

public abstract aspect SecurityAspect {
 public pointcut performCall() :
 call(* TestPrecedence.perform());

 before() : performCall() {
 System.out.println("<SecurityAspect:check/>");
 }
}

In listing 4.10, the aspect ExtendedSecurityAspect uses SecurityAspect as the
base aspect. It too advises the perform() method in the TestPrecedence class and
prints a message.

public aspect ExtendedSecurityAspect extends SecurityAspect {
 before() : performCall() {
 System.out.println("<ExtendedSecurityAspect:check/>");
 }
}

Listing 4.8 TestPrecedence.java

Listing 4.9 SecurityAspect.java

Listing 4.10 ExtendedSecurityAspect.java

Aspect precedence 119
Now when we compile the class with the aspects, we get the following output. You
can observe that the before advice of the derived class was executed before that
of the base class:

> ajc *.java
> java TestPrecedence
<ExtendedSecurityAspect:check/>
<SecurityAspect:check/>
<performing/>

WARNING Since only concrete aspects in the declare precedence clause are desig-
nated for precedence ordering, the declaration of a base aspect (which
is always abstract) to dominate a child has no effect. For example, add-
ing the following clause in the system has no effect:

declare precedence : SecurityAspect, ExtendedSecurityAspect;

4.2.4 Ordering of advice in a single aspect

It is also possible to have multiple pieces of advice in one aspect that you want to
apply to a pointcut. Since the advice resides in the same aspect, aspect prece-
dence rules can no longer apply. In such cases, the advice that appears first lexi-
cally inside the aspect executes first. Note that the only way to control precedence
between multiple advice in an aspect is to arrange them lexically. Let’s illustrate
this rule through a simple example (listing 4.11) that shows both the effect of the
precedence rule and its interaction between different types of advice. Chapter 10
presents a real-world example in which understanding interadvice precedence is
important in authentication and authorization aspects.

public aspect InterAdvicePrecedenceAspect {
 public pointcut performCall() : call(* TestPrecedence.perform());

 after() returning : performCall() {
 System.out.println("<after1/>");
 }

 before() : performCall() {
 System.out.println("<before1/>");
 }

 void around() : performCall() {
 System.out.println("<around>");
 proceed();

Listing 4.11 InterAdvicePrecedenceAspect.java: testing advice ordering in a single aspect

120 CHAPTER 4
Advanced AspectJ
 System.out.println("</around>");
 }

 before() : performCall() {
 System.out.println("<before2/>");
 }
}

After compiling the aspect with the same TestPrecedence class in listing 4.8,
when we run the code we get this output:

> ajc *.java
> java TestPrecedence
<before1/>
<around>
<before2/>
<performing/>
<after1/>
</around>

The output shows that:

1 The first before advice is followed by around advice due to their lexi-
cal ordering.

2 The second before advice runs after the around advice starts executing,
but before executing the captured join point. Note that, regardless of pre-
cedence, all before advice for a join point must execute before the cap-
tured join point itself.

3 The after advice executes before completing the around advice, since it
has higher precedence than the around advice. Note that the earliest an
after advice can run is after the join point’s execution.

4.2.5 Aspect precedence and member introduction

In rare cases, when multiple aspects introduce data members with the same
name or methods with the same signature, the members introduced by the
aspect with the higher precedence will be retained and the matching members
introduced by other aspects will be eliminated. For example, if you have intro-
duced a method and its implementation in one aspect, and another implemen-
tation for the same method in another aspect, only the dominating aspect’s
implementation will survive. The same is true for data members. If two aspects
introduce a member with the same name, type, and initial value, only the mem-
ber from the dominating aspect will survive.

Aspect precedence 121
 Listing 4.12 illustrates the effect of aspect precedence on member introduc-
tion. Compile these two aspects with TestPrecedence.java from listing 4.8. Run-
ning the test program will show that the dominating aspect’s data and method
win over the members of the other aspect.

public aspect SecurityAspect {
 private String TestPrecedence._id
 = "SecurityAspect:id";

 private void TestPrecedence.printId() {
 System.out.println(
 "<SecurityAspect:performSecurityCheck id=" + _id + "/>");
 }

 public pointcut performCall() : call(* TestPrecedence.perform());

 before(TestPrecedence test) : performCall() && target(test) {
 System.out.println("<SecurityAspect:before/>");
 System.out.println(test._id);
 test.printId();

 }
}

SecurityAspect introduces a data member and a method in the TestPrecedence
class. It also invokes the introduced method as well as prints the value of the
introduced member in the before advice to test the effect.

 In listing 4.13, the TrackingAspect aspect introduces the same-named data
and a same-named method as the SecurityAspect aspect. However, it uses a dif-
ferent initial value for the data member and a different body for the method.

public aspect TrackingAspect {
 private String TestPrecedence._id = "TrackingAspect:id";

 private void TestPrecedence.printId() {
 System.out.println(
 "<TrackingAspect:performTracking id=" + _id + "/>");
 }
}

Listing 4.12 SecurityAspect.java

Listing 4.13 TrackingAspect.java

Introducing
data

Introducing
method

Printing introduced data

Invoking introduced
method

Introducing
data

Introducing
method

122 CHAPTER 4
Advanced AspectJ
Let’s also add the following precedence-coordinating aspect (listing 4.14).

aspect SystemAspectCoordinator {
 declare precedence : SecurityAspect, TrackingAspect;
}

When we compile all the files and run the TestPrecedence class, we see this output:

> ajc *.java
> java TestPrecedence
<SecurityAspect:before/>
SecurityAspect:id
<SecurityAspect:performSecurityCheck id=SecurityAspect:id/>
<performing/>

As you can see, the initial value and method implementation introduced by the
dominating SecurityAspect override the same in TrackingAspect.

4.3 Aspect association

By default, only one instance of an aspect exists in a virtual machine (VM)—
much like a singleton class. All the entities inside the VM then share the state of
such an aspect. For example, all objects share a resource pool inside a pooling
aspect. Usually, this kind of sharing is fine and even desirable. However, there
are situations, especially when creating reusable aspects, where you want to asso-
ciate the aspect’s state with an individual object or control flow.

 The aspect associations can be classified into three categories:
■ Per virtual machine (default)
■ Per object
■ Per control-flow association

You can specify a nondefault association by modifying the aspect declaration that
takes the following form:

aspect <AspectName> [<association-specifier>(<Pointcut>)] {
 ... aspect body
}

Note the part in bold. This optional aspect association specification determines
how the aspect is associated with respect to the join points captured by the speci-
fied pointcut.

Listing 4.14 SystemAspectCoordinator.java

Aspect association 123
4.3.1 Default association

Default association is in effect when you do not include an association specifica-
tion in the aspect declaration. All the aspects you have seen so far in this book
are of this type. This type of association creates one instance of the aspect for the
VM, thus making its state shared. To understand aspect creation, let’s create an
aspect for the banking-related Account class (listing 2.5, chapter 2), which pro-
vided a simple API for crediting and debiting amounts for an account. Later, we
will modify this aspect to show the other kinds of associations: per object and per
control flow.

 For our discussion of aspect association in this section, let’s create an aspect,
AssociationDemoAspect. Listing 4.15 shows the default association aspect that
illustrates when an aspect instance is created. We will also use the Account class
developed in listing 2.5 in chapter 2. The aspect logs a message in its construc-
tor to designate its creation. Then it prints the aspect’s instance and the
aspected object.

public aspect AssociationDemoAspect {
 public AssociationDemoAspect() {
 System.out.println("Creating aspect instance");
 }

 pointcut accountOperationExecution(Account account)
 : (execution(* Account.credit(..))
 || execution(* Account.debit(..)))
 && this(account);

 before(Account account)
 : accountOperationExecution(account) {
 System.out.println("JoinPoint: " + thisJoinPointStaticPart
 + "\n\taspect: " + this
 + "\n\tobject: " + account);
 }
}

We print a simple message in the aspect constructor to keep track of when the
aspect instance is created.
The accountOperationExecution() pointcut captures the execution of the credit()
and debit() methods in the Account class. It also captures the Account object
using the this() pointcut so that we can print it in the advice.

Listing 4.15 AssociationDemoAspect.java: using default association

Aspect
constructor

 b

Account
operation
pointcut

 c

Advice that prints the aspect
and account instance

 d

 b

 c

124 CHAPTER 4
Advanced AspectJ
The advice to accountOperationExecution() prints the static context of the cap-
tured join point, the aspect instance, and the Account object captured by the
pointcut. Note that when used from advice, the object this refers to the instance
of an aspect and not the execution object at a join point.

Next let’s write a simple test program (listing 4.16) that creates two Account
objects and calls methods on them.

public class TestAssociation {
 public static void main(String[] args) throws Exception {
 SavingsAccount account1 = new SavingsAccount(12245);
 SavingsAccount account2 = new SavingsAccount(67890);
 account1.credit(100);
 account1.debit(100);

 account2.credit(100);
 account2.debit(100);
 }
}

When we compile the classes and run the TestAssociation program, we see out-
put similar to the following:

> ajc *.java
> java TestAssociation
Creating aspect instance
JoinPoint: execution(void Account.credit(float))
 aspect: AssociationDemoAspect@187aeca
 object: SavingsAccount@e48e1b
JoinPoint: execution(void Account.debit(float))
 aspect: AssociationDemoAspect@187aeca
 object: SavingsAccount@e48e1b
JoinPoint: execution(void Account.credit(float))
 aspect: AssociationDemoAspect@187aeca
 object: SavingsAccount@12dacd1
JoinPoint: execution(void Account.debit(float))
 aspect: AssociationDemoAspect@187aeca
 object: SavingsAccount@12dacd1

The output shows that only one instance of the aspect is created, and that
instance is available to all advice in the aspect.

 d

Listing 4.16 TestAssociation.java: testing associations

Aspect instance
creation

Aspect association 125
4.3.2 Per-object association

Oftentimes, reusable base aspects need to keep some per-object state consisting of
the data that is associated with each object, without having sufficient information
about the type of objects that will participate in the static crosscutting mechanism
of member introduction. Consider a cache-management aspect that needs to track
the last access time for each object in the cache so that it can remove from the
cache objects that are not accessed for a long duration. Since such cache manage-
ment is a reusable concept, we want to create a reusable base aspect. By associating
a separate aspect instance with each object under cache management and by keep-
ing the field definition for the last accessed time inside the base aspect, we can
track the required information for each cache-managed object.

 The per-object association feature lets us associate a new aspect instance with
an execution or target object by using a pointcut. In the following snippet, a new
aspect instance is associated with each new execution object using perthis(),
which matches the abstract access() pointcut:

public abstract aspect CacheManagementAspect perthis(access()) {

 ... aspect's state – instance members such as the last accessed time

 abstract pointcut access();

 ... advice to access() pointcut to update the last accessed time

 ... advice using the aspect’s state
}

As an example, we can enable cache management in a banking application by simply
creating a subaspect that provides a definition for the abstract access() pointcut:

public aspect BankingCacheManagementAspect extends CacheManagementAspect {
 pointcut access() : execution(* banking..Account+.*(..))
 || execution(* banking..Customer+.*(..));
}

Now whenever a join point that is captured by the access() pointcut executes
(such as the debit() method), and the execution object is not previously associ-
ated with a BankingCacheManagementAspect instance, a new instance of the aspect
is created and associated with the execution object. The same scenario will take
place with Customer objects as well. Effectively, the aspect’s state now forms a part
of each execution object’s state. The advice in the base and derived aspects may
then use the state of the aspect as if it were the cached object’s state.

126 CHAPTER 4
Advanced AspectJ
 With per-object associations, an aspect instance is associated with each
object matching the association specification. You can specify two kinds of per-
object associations:

■ perthis()—Associates a separate aspect instance with the execution object
(this) for the join point matching the pointcut specified inside perthis()

■ pertarget()—Associates a separate aspect instance with the target object
for the join point matching the pointcut specified inside pertarget()

With object associations, the aspect instance is created when executing a join
point of a matching object for the first time. Once an association is created
between an object and an instance of the declaring aspect, the association is
good for the lifetime of the object. Specifically, executing another matching join
point on the same object does not create a new aspect with the object. Figure 4.3
illustrates object association using a UML sequence diagram.

 To illustrate, let’s modify the aspect AssociationDemoAspect. Listing 4.17 shows
the use of the perthis() association with the accountOperationExecution pointcut.

public aspect AssociationDemoAspect
 perthis(accountOperationExecution(Account)) {

 public AssociationDemoAspect() {
 System.out.println("Creating aspect instance");
 }

 pointcut accountOperationExecution(Account account)
 : (execution(* Account.credit(..))
 || execution(* Account.debit(..)))
 && this(account);

 before(Account account)
 : accountOperationExecution(account) {
 System.out.println("JoinPoint: " + thisJoinPointStaticPart
 + "\n\taspect: " + this
 + "\n\tobject: " + account);
 }
}

Listing 4.17 AssociationDemoAspect.java: with perthis() association

Aspect association 127
Now when we compile this using the modified aspect and run the test program,
we get following output:

Figure 4.3
This sequence diagram shows
aspect creation and association
points for object-based
association. For this illustration,
we specify the perthis
(execution(* Account.
*(..))) association. An aspect is
created for each object when the
join point matching the pointcut is
first executed for that object. The
aspect association then remains
valid during the lifetime of the
object. Notice that no new aspect
instance is created when the
debit() method is invoked on the
account1 object.

128 CHAPTER 4
Advanced AspectJ
> ajc *.java
> java TestAssociation
Creating aspect instance
JoinPoint: execution(void Account.credit(float))
 aspect: AssociationDemoAspect@e48e1b
 object: SavingsAccount@12dacd1
JoinPoint: execution(void Account.debit(float))
 aspect: AssociationDemoAspect@e48e1b
 object: SavingsAccount@12dacd1
Creating aspect instance
JoinPoint: execution(void Account.credit(float))
 aspect: AssociationDemoAspect@1ad086a
 object: SavingsAccount@10385c1
JoinPoint: execution(void Account.debit(float))
 aspect: AssociationDemoAspect@1ad086a
 object: SavingsAccount@10385c1

The output shows:

1 Two instances of AssociationDemoAspect are created.
2 Each aspect is created right before the execution of the first join point

with each Account object.
3 In each advice body, the same aspect instance is available for each join

point on an object.

To associate an aspect instance with the target object for a matching join point
instead of the execution object, you use pertarget() instead of perthis().

4.3.3 Per-control-flow association

As with per-object association, you sometimes need per-control-flow association
to store per-control-flow states in implementations. You can think of control flow
as a conceptual object that encapsulates the thread of execution encompassing a
given join point. The per-control-flow state then is data associated with this con-
ceptual control-flow object. With per-control-flow association, an aspect instance is
associated with each control flow matching the association specification. Consider
the following snippet of a reusable base aspect providing transaction management.
This aspect needs to store states needed by the transaction management, such as
a JDBC connection object used by all operations:

public abstract
 aspect TransactionManagementAspect percflow(transacted()) {

 ... aspect state:
 ... instance members such as the connection object used

Aspect
instance
creation

Aspect association 129
 abstract pointcut transacted();

 ... advice using the aspect state
}

We can then introduce a transaction management capability in a banking appli-
cation by extending this aspect and providing a definition for the abstract trans-
acted() pointcut:

public aspect BankingTransactionManagementAspect
 extends TransactionManagementAspect {

 pointcut transacted() : execution(* banking..Account+.*(..))
 || execution(* banking..Customer+.*(..));
}

In this aspect, we introduced transaction management into a banking system by
simply specifying the operations that need transaction management support
in the definition of the abstract pointcut transacted(). This will capture the
execution of appropriate methods in banking-related classes. The bulk of
transaction management logic resides in the reusable base Transaction-
ManagementAspect aspect.

 There are a few ways to achieve the goal of creating reusable aspects that need
to keep some per-control-flow state without using a control-flow-based associa-
tion. For example, you could use a thread-specific storage such as ThreadLocal to
manage the control flow’s state. In many cases, however, using an aspect associa-
tion creates a simpler implementation.

 You can specify two kinds of per-control-flow object associations:

■ percflow()—Associates a separate aspect instance with the control flow at
the join point matching the pointcut specified inside percflow()

■ percflowbelow()—Associates a separate aspect instance with the control flow
below the join point matching the pointcut specified inside percflowbelow()

Much like the perthis and pertarget cases, once an association is made between
a control flow and an aspect instance, it continues to exist for the lifetime of that
control flow. Figure 4.4 illustrates the effect of control-flow-based association.

 In figure 4.4, we consider an aspect that associates the aspect instance with
the control flow of join points that match the execution of any method in the
Account class. We see that six aspect instances are created—one each for the top-
level credit() and debit() executions, and two each for getBalance() and set-
Balance(), which are called from the credit() and debit() methods. Each
aspect instance continues to exist until its join point’s execution completes.

130 CHAPTER 4
Advanced AspectJ
Figure 4.4 This sequence diagram shows aspect creation and association points
for control-flow-based associations. In this illustration, we show the
percflow(execution(* Account.*(..))) association. An aspect is
created as soon as each matching control flow is entered for the first time. The
aspect association then remains valid during the lifetime of the control flow. Each
gray area indicates the scope of the aspect instance that was created upon
entering the area.

Aspect association 131
 To better understand control-flow-based association, let’s modify Associa-
tionDemoAspect again. We will also modify the pointcut in the before advice to
include the setBalance() execution, as shown in listing 4.18.

public aspect AssociationDemoAspect
 percflow(accountOperationExecution(Account)) {

 public AssociationDemoAspect() {
 System.out.println("Creating aspect instance");
 }

 pointcut accountOperationExecution(Account account)
 : (execution(* Account.credit(..))
 || execution(* Account.debit(..)))
 && this(account);

 before(Account account)
 : accountOperationExecution(account)
 || (execution(* Account.setBalance(..)) && this(account)) {
 System.out.println("JoinPoint: " + thisJoinPointStaticPart
 + "\n\taspect: " + this
 + "\n\tobject: " + account);
 }
}

When we compile the aspect with the TestAssociation class and run the pro-
gram, we see output similar to the following:

> ajc *.java
> java TestAssociation
Creating aspect instance
JoinPoint: execution(void Account.credit(float))
 aspect: AssociationDemoAspect@10385c1
 object: SavingsAccount@42719c
JoinPoint: execution(void Account.setBalance(float))
 aspect: AssociationDemoAspect@10385c1
 object: SavingsAccount@42719c
Creating aspect instance
JoinPoint: execution(void Account.debit(float))
 aspect: AssociationDemoAspect@30c221
 object: SavingsAccount@42719c
JoinPoint: execution(void Account.setBalance(float))
 aspect: AssociationDemoAspect@30c221
 object: SavingsAccount@42719c

Listing 4.18 AssociationDemoAspect.java: with percflow() association

Aspect
instance
creation

132 CHAPTER 4
Advanced AspectJ
Creating aspect instance
JoinPoint: execution(void Account.credit(float))
 aspect: AssociationDemoAspect@119298d
 object: SavingsAccount@f72617
JoinPoint: execution(void Account.setBalance(float))
 aspect: AssociationDemoAspect@119298d
 object: SavingsAccount@f72617
Creating aspect instance
JoinPoint: execution(void Account.debit(float))
 aspect: AssociationDemoAspect@1e5e2c3
 object: SavingsAccount@f72617
JoinPoint: execution(void Account.setBalance(float))
 aspect: AssociationDemoAspect@1e5e2c3
 object: SavingsAccount@f72617

We now see that:

1 Four instances of the aspect are created, two corresponding to credit()
and two corresponding to the debit() method executions initiated by
the TestAssociation class. Each execution of the credit() and debit()
methods called from the TestAssociation class resulted in a new con-
trol flow matching the join point specified in the aspect association
pointcut, resulting in a new aspect instance being created.

2 Each instance is created just before the execution of the credit() and
debit() methods, since a new control flow matching the pointcut speci-
fied starts with their execution.

3 The setBalance() method that is called from the control flow of debit()
and credit() is associated with the same aspect as its caller. Because the
setBalance() method falls in the control flow of debit() and credit(),
the instance created for the caller continues to be associated with any
method called by this caller. Note that if we include the setBalance()
method in the accountOperationExecution() pointcut, it will result in the
creation of a new aspect instance upon each execution of the set-
Balance() method, similar to the aspect instances shown in figure 4.4.

4.3.4 Implicit limiting of join points

Using the per-object or per-control-flow association has the side effect of implic-
itly limiting the advice in the aspect to only join points that match the scope of
an aspect instance. The scope of an aspect instance is the set of join points that
have an aspect instance associated with them. For example, for the percflow()
association, the scope of an aspect instance is all the join points occurring inside
the control flow of the specified pointcut. This means that even if a pointcut

Aspect
instance
creation

Aspect association 133
specified for an advice matches a join point, the advice to that join point won’t
apply unless the join point also matches the scope of the aspect. This side effect
often surprises developers when they refactor an aspect to create reusable parts
and need to use per- associations.

 The aspect association implies that advice in an aspect will apply to join
points only if:

■ For perthis() associations, the join point’s execution object matches the
aspect instance’s associated object.

■ For pertarget() associations, the join point’s target object matches the
aspect’s associated object.

■ For percflow() associations, the join point is in the control flow of the
aspect’s associated control flow.

■ For percflowbelow() associations, the join point is below the control flow
of the aspect’s associated control flow.

A simple example, shown in listing 4.19, might illustrate this concept better.

public class TestAssociationScope {
 public static void main(String[] args) {
 A a = new A();
 a.m();
 }
}

class A {
 public void m() {
 B b = new B();
 b.m();
 }
}

class B {
 public void m() {
 }
}

aspect TestAspect {
 before() : !within(TestAspect) {
 System.out.println(thisJoinPoint);
 }
}

Listing 4.19 TestAssociationScope.java

134 CHAPTER 4
Advanced AspectJ
When we compile and run this program, we see logging of each executed join point:
> ajc *.java
> java TestAssociationScope
staticinitialization(TestAssociationScope.<clinit>)
execution(void TestAssociationScope.main(String[]))
call(A())
staticinitialization(A.<clinit>)
preinitialization(A())
initialization(A())
execution(A())
call(void A.m())
execution(void A.m())
call(B())
staticinitialization(B.<clinit>)
preinitialization(B())
initialization(B())
execution(B())
call(void B.m())
execution(void B.m())

Now let’s modify TestAspect to use the perthis() association.
aspect TestAspect perthis(execution(void A.*())) {
 before() : !within(TestAspect) {
 System.out.println(thisJoinPoint);
 }
}

When we compile and run this again, we see that only the methods that match
the execution(void A.*())) pointcut are advised:

> ajc *.java
> java TestAssociationScope
execution(void A.m())
call(B())
call(void B.m())

4.3.5 Comparing object association with member introduction
It is possible to avoid using the perthis()/pertarget() association with a judicious
use of static crosscutting using introduced fields. In that case, instead of keeping
the state in an aspect, you introduce that state to the object being aspected. This
kind of modification often leads to simpler design. For example, consider this
aspect, which associates an aspect instance with each Account object. The aspect’s
state—_minimumBalance—effectively becomes part of the Account object’s state:

public aspect MinimumBalanceAspect perthis(this(Account)) {
 private float _minimumBalance;

 ... methods and advice using _minimumBalance
}

Aspect association 135
Now if we want to use member introduction instead of association, we can
change the aspect in the following way:

public aspect MinimumBalanceAspect {
 private float Account._minimumBalance;

 ... methods and advice using _minimumBalance
}

In this snippet, we use the member introduction mechanism to associate a new
member—_minimumBalance—with each Account object. The result is identical in
both snippets—a new state is associated with each Account object.

 Certain reusable aspects, such as cache management, that need to work with
diverse types of objects may not have any common shared type. For example,
Customer and Account probably have no class or interface common to their
inheritance hierarchy. Therefore, to introduce a state, you will first need to spec-
ify a common type using a declare parent. For example, you can declare the
interface Cacheable to be a parent type of Account and Customer. Then you may
introduce the required state to Cacheable. This way, you get the same effect as
per-object association using a simple introduction mechanism.

 Developing reusable aspects using introduction instead of per-object associa-
tion can get tricky. The main reason is that a reusable base aspect, unaware of the
application-specific classes, cannot use the declare parents construct to specify a
common type. While you can get around this issue by using a complex design,
per-object association can offer an elegant alternative solution. When you’re
using per-object associations, the base aspect includes an abstract pointcut that
associates the aspect with the object at the matching join points. Then, all that a
derived aspect needs to do is provide a definition for that pointcut so that it cap-
tures join points whose associated objects need additional per-object state. Chap-
ter 9 (section 9.7.2) provides a concrete example of the simplification of a
reusable aspect using per-object association.

 The choice between use of per-object association and member introduction is
a balance between elegance and simplicity. Experience is usually the best guide.

4.3.6 Accessing aspect instances

Aspect instances are created automatically by the system according to the associ-
ation specification. To access their state from outside the aspect, however, you
will need to get its instance. For example, in a profiling aspect that collects dura-
tion for the execution of profiled methods, typically you would keep the profile
data inside the profile aspect. When you need to retrieve this data, say from

136 CHAPTER 4
Advanced AspectJ
another thread that will print the latest profile information, you have to get the
aspect instance first. For all types of aspect associations, you can get the aspect
instance using the static method aspectOf() that is available for each aspect. The
method returns an instance of the aspect. For a profiler case, we could retrieve
the data as follows:

Map profileData = ProfilerAspect.aspectOf().getProfileData();

If the getProfileData() method were static (which would require data returned
to be marked static), we could directly access the data using Profiler-
Aspect.getProfileData() irrespective of the association specification. In cer-
tain cases, such as when using third-party aspects or aspects with a class as a
base, it may not be possible to mark certain members static due to other design
considerations. In any case, marking a certain state static for easy access may
not be a good practice and may prevent reusability through the use of different
aspect associations.

 Each aspect contains two static methods—aspectOf() to obtain the associated
aspect instance and hasAspect() to check if an instance is associated. For aspects
with default and control-flow association, both these methods take no arguments,
whereas for aspects with per-object association, these methods take one argu-
ment of type Object to specify the object for which the associated aspect instance
is sought. In all cases, the aspectOf() method returns the instance of an aspect if
one is associated; otherwise, it throws a NoAspectBoundException. The method
hasAspect() returns true if an aspect instance is associated; otherwise, it returns
false. Note that since an aspect instance with a control-flow-based association
lives only during the control flow (or below, for percflowbelow()), you can get
the aspect instance only in the control flow associated with the aspect.

4.4 Exception softening

Java specifies two categories of exceptions that can be thrown by a method:
checked and unchecked exceptions. When an exception is checked, callers must
deal with it either by catching the exception or by declaring that they can throw
it. Unchecked exceptions, which can be either RuntimeException or Error, do
not need to be dealt with explicitly. Exception softening allows checked excep-
tions thrown by specified pointcuts to be treated as unchecked ones. Softening
eliminates the need to either catch the exception or declare it in the caller’s
method specification.

Exception softening 137
 The softening feature helps to modularize the crosscutting concerns of excep-
tion handling. For example, you can soften a RemoteException thrown in a
Remote Method Invocation (RMI)-based system to avoid handling the exception
at each level. This may be a useful strategy in some situations. For instance, if
you know that you are using local objects of RMI-capable classes that won’t throw
any RemoteException, you can soften those exceptions.

 To soften exceptions, you use the declare soft construct that takes the follow-
ing form:

declare soft : <ExceptionTypePattern> : <pointcut>;

If a method is throwing more than one checked exception, you will have to indi-
vidually soften each one. In listing 4.20, the aspect declares the softening of an
exception thrown by the TestSoftening.perform() method. The method now
behaves as if it is throwing an org.aspectj.lang.SoftException, which extends
RuntimeException.

import java.rmi.RemoteException;

public class TestSoftening {
 public static void main(String[] args) {
 TestSoftening test = new TestSoftening();
 test.perform();
 }

 public void perform() throws RemoteException {
 throw new RemoteException();
 }
}

Compiling the TestSoftening class will result in a compiler error, since main()
neither catches the exception nor declares that it is throwing that exception:

> ajc TestSoftening.java
F:\aspectj-book\ch04\section4.4\TestSoftening.java:6

 Unhandled exception type RemoteException
test.perform();
^^^^^^^^^^^^^^

Listing 4.21 shows SofteningTestAspect, which softens the RemoteException
thrown by the join point that corresponds to the call to the TestSoftening.per-
form() method.

Listing 4.20 TestSoftening.java: code for testing the effect of softening an exception

➥

138 CHAPTER 4
Advanced AspectJ
import java.rmi.RemoteException;

public aspect SofteningTestAspect {
 declare soft : RemoteException : call(void TestSoftening.perform());
}

By softening the exception, we can compile the code without errors. When we run the
program, we see a call stack due to a thrown SoftException:

> ajc TestSoftening.java SofteningTestAspect.java
> java TestSoftening
Exception in thread "main" org.aspectj.lang.SoftException
 at TestSoftening.main(TestSoftening.java:6)

An aspect declaring an exception for a join point wraps the join point execution
in a try/catch block. The catch block catches the original exception, and the throw
block throws a SoftException that wraps the original exception. This means that
in listing 4.21, if we were to specify execution instead of call in the pointcut, the
compiler would still give us a compiler error for the unhandled exception. To
illustrate this, let’s look at the code in listings 4.20 and 4.21 again. First let’s see
that compiling TestSoftening together with SofteningTestAspect results in a
woven TestSoftening class that looks like the following:

import java.rmi.RemoteException;

public class TestSoftening {
 public static void main(String[] args) {
 TestSoftening test = new TestSoftening();
 try {
 test.perform();
 } catch (RemoteException ex) {
 throw new SoftException(ex);
 }
 }

 public void perform() throws RemoteException {
 throw new RemoteException();
 }
}

The portion marked in bold shows the effective code that was inserted due to
SofteningTestAspect. As you see, the RemoteException is now caught by the
main() method, which throws a SoftException wrapping the caught exception.
Since the SoftException is an unchecked exception, main() no longer needs to
declare that it can throw it.

Listing 4.21 Softening aspect

Privileged aspects 139
 Now, instead of the aspect in listing 4.20, let’s apply the following aspect
(which softens the exception at an execution pointcut rather than a call point-
cut) to the original TestSoftening class:

public aspect SofteningTestAspect {
 declare soft : RemoteException : execution(void TestSoftening.perform());
}

Compiling this aspect with the TestSoftening class will result in woven code that
looks like this:

import java.rmi.RemoteException;

public class TestSoftening {
 public static void main(String[] args) {
 TestSoftening test = new TestSoftening();
 test.perform();
 }

 public void perform() throws RemoteException {
 try {
 throw new RemoteException();
 } catch (RemoteException ex) {
 throw new SoftException(ex);
 }
 }
}

Here too, the portion marked in bold is the result of effective code added in the
process of weaving. Since we have specified the softening of the execution of the
perform() method, the try/catch is added to the perform() method itself. Note that
although perform() would now never throw a RemoteException, its specification has
not been altered, and therefore the compiler will complain that the RemoteException
that may be thrown by perform() must be caught or declared to be thrown.

 Exception softening is a quick way to avoid tangling the concern of exception
handling with the core logic. But be careful about overusing this, because it can
lead to masking off checked exceptions that you actually should handle in the nor-
mal way by making a conscious decision to handle the exception or propagate it to
the caller. We will look at another pattern to handle exceptions in chapter 8.

4.5 Privileged aspects

For the most part, aspects have the same standard Java access-control rules as
classes. For example, an aspect normally cannot access any private members of
other classes. This is usually sufficient and, in fact, desirable on most occasions.

140 CHAPTER 4
Advanced AspectJ
However, in a few situations, an aspect may need to access certain data members
or operations that are not exposed to outsiders. You can gain such access by
marking the aspect “privileged.”

 Let’s see how this works in the following example. The TestPrivileged class
(listing 4.22) contains two private data members.

public class TestPrivileged {
 private static int _lastId = 0;
 private int _id;

 public static void main(String[] args) {
 TestPrivileged test = new TestPrivileged();
 test.method1();
 }

 public TestPrivileged() {
 _id = _lastId++;
 }

 public void method1() {
 System.out.println("TestPrivileged.method1");
 }
}

Consider a situation where PrivilegeTestAspect (listing 4.23) needs to access
the class’s private data member to perform its logic.

public aspect PrivilegeTestAspect {
 before(TestPrivileged callee) : call(void TestPrivileged.method1())
 && target(callee) {
 System.out.println("<PrivilegeTestAspect:before objectId=\""
 + callee._id + "\"");
 }
}

If we tried to compile this code, we would get a compiler error for accessing the
TestPrivileged class’s private member _id:

> ajc *.java
F:\aspectj-book\ch04\section4.5\PrivilegeTestAspect.java:7

Listing 4.22 TestPrivileged.java

Listing 4.23 PrivilegeTestAspect.java

Summary 141
 The field callee._id is not visible
+ callee._id + "\"");
 ^^^^^^^^^^

1 error

If, however, we mark the aspect as privileged (as follows), the code compiles
without error and behaves as expected:

privileged public aspect PrivilegeTestAspect {
 ...
}

Now with the privileged aspect, we could access the internal state of a class with-
out changing the class.

WARNING Privileged aspects have access to implementation details. Therefore, ex-
ercise restraint while using this feature. If the classes change their im-
plementation—which they are legitimately entitled to do—the aspect
accessing such implementation details will need to be changed as well.

4.6 Summary

Einstein said, “Keep things as simple as possible, but no simpler.” The AspectJ
concepts and constructs presented in this and the previous chapter are consis-
tent with this advice. You can start writing crosscutting implementations of mod-
erate complexity without using the advanced concepts presented in this chapter;
however, you may eventually face situations that require the use of these more
advanced constructs to simplify your implementation significantly.

 The reflection support in AspectJ provides access to the join point’s static and
dynamic information through a small number of interfaces. This information
can be used in logging to gain more insight into the system’s inner workings.
The dynamic and static information together can produce an enriched log out-
put with a simple logging aspect.

 Aspect-precedence control and aspect-association choices help manage com-
plexity in systems that have a large number of aspects. As you begin to realize
the benefits of aspect-oriented programming, you may find that you are imple-
menting more aspects to handle typical crosscutting concerns that affect the
same parts of the system, such as authorization and transaction management.
Aspect precedence will help you coordinate these aspects so that they function
correctly. The design and implementation of off-the-shelf reusable aspects will
also benefit from the aspect-association feature. Developers will now be able to

➥

142 CHAPTER 4
Advanced AspectJ
create reusable aspects more effectively while knowing only minimal information
about the target systems.

 Using the privileged aspect feature will help in handling situations where you
need to access the private members of classes. In this case, though, it is perhaps
more important to understand the negative implications of using this technique.

 These concepts, along with the ones presented in the earlier chapters, com-
plete our introduction to the AspectJ language. Now that you have an under-
standing of the concepts and constructs in AspectJ, we are ready to dive into
practical examples in areas such as logging, resource pooling, and authorization.
The material presented in this and the two previous chapters will serve as a ref-
erence for you while reading the remainder of the book.

Part 2

Basic applications of AspectJ

Part 2 puts the knowledge you gained in the first part to practical use. The
reason we chose the examples in these chapters is the simplicity of the
AspectJ constructs used, and that they can be of benefit even if your organiza-
tion has not yet fully embraced AspectJ. These examples demonstrate how
you can use AspectJ to improve your personal productivity during the devel-
opment phase. You can take out these aspects when you deploy your system
without affecting the correctness of the core system. Of course, as we explain,
you may continue using these aspects in the deployed system and gain a lot
more benefits. The aspects in these examples are also sometimes referred to
as developmental aspects.

 We begin by examining a classic application of AspectJ: logging. Then we
modularize the system wide policy-enforcement concern using AspectJ to create
a safety net that ensures you won’t get into trouble by violating programming
policies. Finally, we deal with the optimization concern by using resource pool-
ing and caching. The real benefit of optimization comes if you use these aspects
in a deployment situation. However, you may simply use them to understand
the bottlenecks in your application and to determine if and where pooling or
caching is needed. Later, if you find that using AspectJ in your deployed appli-
cation is not an option, you may hand-code those optimizations.

5Monitoring techniques:
logging, tracing,

and profiling
This chapter covers
■ Noninvasive logging using AspectJ
■ Comparisons between AspectJ-based and

conventional logging
■ Logging idioms
■ Extending logging for other purposes
145

146 CHAPTER 5
Monitoring techniques
Logging is one of the most common techniques that we use to understand a sys-
tem’s behavior. In its simplest form, logging prints messages describing the opera-
tions performed. For example, in a banking system, you would log each account
transaction with information such as the nature of the transaction, the account
number, and the transaction amount. During the development cycle, logging plays
a role similar to a debugger. It is also usually the only reasonable choice for debug-
ging distributed programs. By examining the log, a developer can spot unexpected
system behavior and correct it. A log also helps the developer see the interaction
between different parts of a system in order to detect exactly where the problem
might be. Likewise, in fully deployed systems, logging acts as a diagnostic assistant
for finding the root cause of the problem.

 Currently used mechanisms implement logging along with the operation’s core
logic, which is tangled with the logging statements. Further, changing the logging
strategy often requires changing many modules. Since logging is a crosscutting
concern, AOP and AspectJ can help modularize it. With AspectJ, you can imple-
ment the logging mechanism independent of the core logic. AspectJ simplifies the
logging task by modularizing its implementation and obviating the need to
change many source files when requirements change. AspectJ not only saves a ton
of code, but also establishes centralized control, consistency, and efficiency.

 Implementing logging with AspectJ—a safe and relatively simple task—is a
good way to learn AOP and AspectJ and to introduce it into your organization.
The next time you encounter some unexpected problem that occurs infre-
quently, you can use AspectJ-based logging to easily monitor the operation log
and isolate the problem. Once the problem is fixed, you can just as easily remove
logging. In this chapter, we demonstrate how you’d use AspectJ in implementing
logging. The solution presented here builds on the standard logging APIs.
Throughout the book, you will see how logging aspects are used to reveal the
inner workings of the solutions.

5.1 Why use AspectJ for logging?

Although we already have a few good logging toolkits, such as the standard Java
logging introduced in JDK 1.4 and log4j, we still have to write log statements
everywhere we need logging—and it is not a trivial task. In the next few sections,
we will consider a simple example that will allow us to examine both conven-
tional and AspectJ-based logging. We will first study the conventional solution
using logging toolkits. This will help you understand the AspectJ-based solution
we will present next, since it also uses these logging toolkits.

Why use AspectJ for logging? 147
5.1.1 A simple case in point

Consider this simple example of shopping-cart functionality. For brevity’s sake,
we will implement only a handful of classes, enough to allow us to look at various
facets of the logging concern. The Item class, in listing 5.1, models a shopping
item that can be purchased. The Item class has methods for querying its identi-
fier and price as well as for getting its string representation.

public class Item {
 private String _id;
 private float _price;

 public Item(String id, float price) {
 _id = id;
 _price = price;
 }

 public String getID() {
 return _id;
 }

 public float getPrice() {
 return _price;
 }

 public String toString() {
 return "Item: " + _id;
 }
}

Next, the ShoppingCart class, shown in listing 5.2, contains a list and allows us to
add and remove items.

import java.util.*;

public class ShoppingCart {
 private List _items = new Vector();

 public void addItem(Item item) {
 _items.add(item);
 }

 public void removeItem(Item item) {

Listing 5.1 The Item class: models an item that can be purchased

Listing 5.2 The ShoppingCart class: models a shopping cart

148 CHAPTER 5
Monitoring techniques
 _items.remove(item);
 }

 public void empty() {
 _items.clear();
 }

 public float totalValue() {
 // unimplemented... free!
 return 0;
 }
}

The Inventory class, in listing 5.3, models items in the stock. The class contains
methods for adding and removing items.

import java.util.*;

public class Inventory {
 private List _items = new Vector();

 public void addItem(Item item) {
 _items.add(item);
 }

 public void removeItem(Item item) {
 _items.remove(item);
 }
}

The next class, ShoppingCartOperator, shown in listing 5.4, is a service class
that ensures that inventory is kept up-to-date when items are added to or
removed from a shopping cart. This class allows us to examine logging needs
for nested operations.

public class ShoppingCartOperator {
 public static void addShoppingCartItem(ShoppingCart sc,
 Inventory inventory,
 Item item) {
 inventory.removeItem(item);
 sc.addItem(item);
 }

Listing 5.3 The Inventory class: models the shop inventory

Listing 5.4 ShoppingCartOperator: manages the shopping cart

Why use AspectJ for logging? 149
 public static void removeShoppingCartItem(ShoppingCart sc,
 Inventory inventory,
 Item item) {
 sc.removeItem(item);
 inventory.addItem(item);
 }
}

Finally, we implement a class for testing the functionality. As you can see in list-
ing 5.5, we simply add several items to the inventory and then add a few of those
items to a shopping cart.

public class Test {
 public static void main(String[] args) {
 Inventory inventory = new Inventory();
 Item item1 = new Item("1", 30);
 Item item2 = new Item("2", 31);
 Item item3 = new Item("3", 32);

 inventory.addItem(item1);
 inventory.addItem(item2);
 inventory.addItem(item3);

 ShoppingCart sc = new ShoppingCart();
 ShoppingCartOperator.addShoppingCartItem(sc, inventory, item1);
 ShoppingCartOperator.addShoppingCartItem(sc, inventory, item2);
 }
}

This collection of classes allows us to understand various logging scenarios and
requirements. As with typical software systems in the initial stages, this example
contains no logging—it is only in later stages that logging becomes an important
concern. Now let’s look at logging as it would be implemented in the conven-
tional way; later we will see how it is implemented in AspectJ.

5.1.2 Logging the conventional way

To truly appreciate the advantages offered by AspectJ, let’s consider implement-
ing logging without AspectJ. Since logging is such a common requirement, APIs
and libraries are available that let us perform logging consistently. Notable
examples are the standard Java logging API and log4j from Apache. These tool-
kits provide an efficient and abstract access to the underlying logging mechanics.

Listing 5.5 A test class

150 CHAPTER 5
Monitoring techniques
They enable us to easily switch between console, socket stream, native event log-
ging, and so forth. In addition, they allow sophisticated formatting of log mes-
sages, including the XML format. These toolkits further allow the hierarchy of
logger objects and offer an easy control over the information logged.

 Although these logging APIs are a significant improvement over the use of
System.out.println() or other homegrown solutions, in the complete perspec-
tive, they provide only a part of the answer. To illustrate the additional work
needed on our part, let’s look at how we can add logging to the shopping cart
example in section 5.1.1, using the standard Java logging API.

NOTE When using the standard Java logging kit, we use Logger.logp() in-
stead of Logger.log() because of an inherent problem associated with
the latter. The log() method deduces the caller class and method by
examining the call stack. With the presence of an optimizing compiler
and hotspot/JIT-enabled virtual machine, the deduced caller may be an
incorrect one. The same problem exists with the log4j toolkit as well
(with %C, %M, %F, %L, or a combined %l layout pattern). The performance
hit from using the call stack for deducing a caller is also significant. The
cost involves obtaining the call stack and parsing its contents—not a
trivial job. See the toolkit documentation for more details.

First, we instrument each method of the Item class to log the entry into it. We
choose to log each method at the Level.INFO level because we are simply writ-
ing informational entries to the log when we enter the methods. In listing 5.6,
we change the Item class by adding code to obtain the logger object and log
each method.

import java.util.logging.*;

public class Item {
 private String _id;
 private float _price;
 static Logger _logger = Logger.getLogger("trace");

 public Item(String id, float price) {
 _id = id;
 _price = price;
 }

 public String getID() {

Listing 5.6 The Item class with logging enabled

Why use AspectJ for logging? 151
 _logger.logp(Level.INFO, "Item", "getID", "Entering");
 return _id;
 }

 public float getPrice() {
 _logger.logp(Level.INFO, "Item", "getPrice", "Entering");
 return _price;
 }

 public String toString() {
 _logger.logp(Level.INFO, "Item", "toString", "Entering");
 return "Item: " + _id;
 }
}

Next, similar to what we’ve done with the Item class, we instrument logging into
the ShoppingCart class’s methods, as shown in listing 5.7. As you can see, the
changes needed for logging in both classes are the same in that every method
needs to make an additional call to the logp() method.

import java.util.*;
import java.util.logging.*;

public class ShoppingCart {
 static Logger _logger = Logger.getLogger("trace");

 private List _items = new Vector();

 public void addItem(Item item) {
 _logger.logp(Level.INFO,
 "ShoppingCart", "addItem", "Entering");
 _items.add(item);
 }

 public void removeItem(Item item) {
 _logger.logp(Level.INFO,
 "ShoppingCart", "removeItem", "Entering");
 _items.remove(item);
 }

 public void empty() {
 _logger.logp(Level.INFO,
 "ShoppingCart", "empty", "Entering");
 _items.clear();
 }

Listing 5.7 The ShoppingCart class with logging enabled

152 CHAPTER 5
Monitoring techniques
 public float totalValue() {
 _logger.logp(Level.INFO,
 "ShoppingCart", "totalValue", "Entering");
 // unimplemented... free!
 return 0;
 }
}

Because the logging instrumentation for the Inventory and ShoppingCartOpera-
tor classes is very similar, we will not show the listings for those classes here.

 Finally, we change the Test class to obtain the logger object and log the action
of entering the Test class’s only method, main(), as shown in listing 5.8.

import java.util.logging.*;

public class Test {
 static Logger _logger = Logger.getLogger("trace");

 public static void main(String[] args) {
 _logger.logp(Level.INFO,
 "Test", "main", "Entering");

 Inventory inventory = new Inventory();
 Item item1 = new Item("1", 30);
 Item item2 = new Item("2", 31);
 Item item3 = new Item("3", 32);

 inventory.addItem(item1);
 inventory.addItem(item2);
 inventory.addItem(item3);

 ShoppingCart sc = new ShoppingCart();
 ShoppingCartOperator.addShoppingCartItem(sc, inventory, item1);
 ShoppingCartOperator.addShoppingCartItem(sc, inventory, item2);

 }
}

We now have an implementation with an entry for each method to be logged,
using the standard Java logging toolkit. When you compile the classes and run
the program, you get output similar to this:

> ajc *.java
> java Test

Listing 5.8 The Test class with logging enabled

Why use AspectJ for logging? 153
Mar 30, 2003 12:14:20 AM Test main
INFO: Entering
Mar 30, 2003 12:14:20 AM Inventory addItem
INFO: Entering
Mar 30, 2003 12:14:20 AM Inventory addItem
INFO: Entering
Mar 30, 2003 12:14:20 AM Inventory addItem
INFO: Entering
Mar 30, 2003 12:14:20 AM ShoppingCartOperator addShoppingCartItem
INFO: Entering
Mar 30, 2003 12:14:20 AM Inventory removeItem
INFO: Entering
Mar 30, 2003 12:14:20 AM ShoppingCart addItem
INFO: Entering
Mar 30, 2003 12:14:20 AM ShoppingCartOperator addShoppingCartItem
INFO: Entering
Mar 30, 2003 12:14:20 AM Inventory removeItem
INFO: Entering
Mar 30, 2003 12:14:20 AM ShoppingCart addItem
INFO: Entering

This was quite a task, right? Granted, the job was mostly mechanical. You proba-
bly copied and pasted code and modified the arguments to logp() methods. We
hope you did a perfect job of changing each argument correctly; if not, you’ll end
up with a logging message that is inconsistent with the operation being per-
formed. Now consider how long it would take to introduce logging in a real sys-
tem with hundreds of classes. How sure could you be that the methods would log
the right information?

5.1.3 Logging the aspect-oriented way

Now let’s use AspectJ to introduce the logging functionality into each method in all
the classes in the original example. As you will see, with AspectJ-based logging, we
don’t have to modify our classes. All we need to do is add the aspect in listing 5.9 to
our system, and compile it with the classes (from listings 5.1 through 5.5) using the
AspectJ compiler. That’s it! We now have tons of output to impress our colleagues.

import java.util.logging.*;
import org.aspectj.lang.*;

public aspect TraceAspect {
 private Logger _logger = Logger.getLogger("trace");

 pointcut traceMethods()
 : execution(* *.*(..)) && !within(TraceAspect);

Listing 5.9 TraceAspect performing the same job

154 CHAPTER 5
Monitoring techniques
 before() : traceMethods() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 _logger.logp(Level.INFO, sig.getDeclaringType().getName(),
 sig.getName(), "Entering");
 }
}

When we compile this aspect together with the shopping cart classes and run the
test program, we get output similar to this:

> ajc *.java
> java Test
Mar 30, 2003 12:16:15 AM Test main
INFO: Entering
Mar 30, 2003 12:16:16 AM Inventory addItem
INFO: Entering
Mar 30, 2003 12:16:16 AM Inventory addItem
INFO: Entering
Mar 30, 2003 12:16:16 AM Inventory addItem
INFO: Entering
Mar 30, 2003 12:16:16 AM ShoppingCartOperator addShoppingCartItem
INFO: Entering
Mar 30, 2003 12:16:16 AM Inventory removeItem
INFO: Entering
Mar 30, 2003 12:16:16 AM ShoppingCart addItem
INFO: Entering
Mar 30, 2003 12:16:16 AM ShoppingCartOperator addShoppingCartItem
INFO: Entering
Mar 30, 2003 12:16:16 AM Inventory removeItem
INFO: Entering
Mar 30, 2003 12:16:16 AM ShoppingCart addItem
INFO: Entering

Observe the sheer amount of code we saved with AspectJ! Such modularization is
possible because of AOP and AspectJ’s support for programming crosscutting
concerns. However, saved coding effort is not the only benefit of using AspectJ.
Later in this chapter, we will explore all the details of logging using AspectJ and
the benefits it offers.

5.2 What’s wrong with conventional logging

Now that you have seen logging using conventional and AspectJ-based techniques,
let’s look at the shortcomings of conventional solutions. Figure 5.1 illustrates the
overall schematic of current logging solutions. Every place that needs to log an
event needs to explicitly invoke a call to the log() method of an appropriate logger.

What’s wrong with conventional logging 155
As you can see, the logging calls will be all over the core modules. When a new
module is added to the system, all of its methods that need logging must be
instrumented. Such instrumentation is invasive, causing the tangling of the core
concerns with the logging concern. Further, if you ever happen to change the
logging toolkit to a different API, you need to revisit every logging statement and
modify it.

 Consistency is the single most important requirement of logging. It means
that if the logging specification requires that certain kinds of operations be
logged, then the implementation must log every invocation of those operations.
When things go wrong in a system, doubting the logging consistency is probably
the last thing you want to do. Missed logging calls can make output hard to
understand and sometimes useless. Achieving consistency using conventional
logging is a lofty goal, and while systems can attain it initially, it requires continu-
ing vigilance to keep it so. For example, if you add new classes to the system or
new methods in existing classes, you must ensure that they implement logging
that matches the current logging strategy.

Figure 5.1
In the conventional
logging solution, all log
points must issue calls
to the logger explicitly.

156 CHAPTER 5
Monitoring techniques
5.3 The beauty of AspectJ-based logging

Although logging APIs solve quite a few problems, as you have just seen they also
leave some gaps. The limitations are not a result of the logging APIs or their
implementations; rather, they stem from the fundamental limitations of object-
oriented programming, which require embedding the logging invocations in
each module. AOP and AspectJ overcome those limitations. AspectJ easily imple-
ments the invocation of logging statements from all the log points. The beauty is
that you do not need to actually instrument any log points; writing an aspect
does it automatically. Further, since there is a central place to control logging
operations, you achieve consistency easily.

 The most fundamental difference between conventional logging and AspectJ-
based logging is modularization of the logging concern. Instead of writing mod-
ules that implement core concepts in addition to invoking logging operations,
with AspectJ you write a few aspects that advise the execution of the operations
in the core modules to perform the logging. That way, the core modules do not
carry any logging-related code. By modularizing, you separate the logging con-
cern from the core concerns.

 The solution presented here builds on available logging toolkits. For the final
act of logging, you can use any of the toolkits available. AspectJ comes into the
picture to intercept the operations, collect the context, and form a message to
pass on to the underlying logging system. Note that you do not have to use a
special-purpose logging toolkit to perform logging; using System.out and Sys-
tem.err or any print stream is a legitimate choice, although perhaps a poor one.
Figure 5.2 shows the overview of AspectJ-based logging.

 With AspectJ-based logging, the logger aspect separates the core modules
and the logger object. Instead of the core modules’ embedding the log()
method invocations in their source code, the logger aspect weaves the logging
invocations into the core modules when they are needed. AspectJ-based logging
reverses the dependency between the core modules and the logger; it is the
aspect that encodes how the operations in the core modules are logged instead
of each core module deciding for itself.

5.4 Developing logging and tracing aspects

Tracing is a special form of logging where the entry and/or exit of selected meth-
ods are logged. Tracing is useful during the development phase in order to
understand system behavior, especially when a debugger is not an option, either

Developing logging and tracing aspects 157
due to the speed at which the activities occur or due to the distributed nature of
the application. In this section, we will examine method tracing and exception
logging. We will also use these examples to show how you can accomplish the
task using different logging toolkits. These snippets will enable you to try log-
ging for your own system.

5.4.1 Method call tracing

Let’s develop an aspect that will enable tracing method calls in any system. Sim-
ply compile this aspect with the rest of the code and you will see the logging of
every method call. No changes will be needed in any of your classes. Our first
version, in listing 5.10, uses System.out as the logging stream.

Figure 5.2 An overall schematic of AspectJ-based logging. Compare this with figure 5.1.
Specifically note the reversal of arrows to Class_1.java and Class_n.java.

158 CHAPTER 5
Monitoring techniques
import org.aspectj.lang.*;

public aspect TraceAspectV1 {
 pointcut traceMethods()
 : (execution(* *.*(..))
 || execution(*.new(..))) && !within(TraceAspectV1);

 before() : traceMethods() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("Entering ["
 + sig.getDeclaringType().getName() + "."
 + sig.getName() + "]");
 }
}

The traceMethods() pointcut captures the calls to methods that need tracing—
in our case, it will be all the methods in the system. The !within(Trace-
AspectV1) part helps us avoid recursion caused by tracing method calls in the
aspect itself. Once we compile the aspect along with the core modules, a log
message will print to System.out before any method is executed. We could also,
if required, easily produce a log message after the method execution by adding
an after advice.
We use thisJoinPointStaticPart to get information about the method captured
by the pointcut. The method getSignature() on thisJoinPointStaticPart returns
the signature of the captured method. We use this object to get the name of the
class and method to form and print the log message. Note that we could have
used thisJoinPoint, but using thisJoinPointStaticPart instead gives better
performance using fewer resources, and in our case, the information contained
in it is sufficient. See chapter 4 for detailed information about using reflection in
an advice body.

When we run this aspect with our shopping cart example, we get the following output:

> ajc *.java
> java Test
Entering [Test.main]
Entering [Inventory.<init>]
Entering [Item.<init>]
Entering [Item.<init>]
Entering [Item.<init>]
Entering [Inventory.addItem]
Entering [Inventory.addItem]
Entering [Inventory.addItem]
Entering [ShoppingCart.<init>]

Listing 5.10 Tracing methods: the first version, using System.out as the logging stream

Traced
methods
pointcut

 b

Log
advice

 c

 b

 c

Developing logging and tracing aspects 159
Entering [ShoppingCartOperator.addShoppingCartItem]
Entering [Inventory.removeItem]
Entering [ShoppingCart.addItem]
Entering [ShoppingCartOperator.addShoppingCartItem]
Entering [Inventory.removeItem]
Entering [ShoppingCart.addItem]

Typically, you will want to limit the list of traced methods to make log output
more understandable and avoid degrading the performance. We can achieve this
goal by simply modifying the traceMethods() pointcut to limit the tracing to cer-
tain packages, classes, or methods with a particular signature, as shown in the
following snippet:

 pointcut traceMethods()
 : (execution(* com.manning.model..*.*(..))
 || execution(com.manning.model..*.new(..))
 || execution(* com.manning.ui.*.*(..))
 || execution(com.manning.ui.*.new(..))
 || execution(* com.manning.util.ComplexComputation.*(..))
 || execution(com.manning.util.ComplexComputation.new(..))
 || execution(* com.manning.database.Database.set*(..)))
 && !within(TraceAspectV1);

This modified pointcut ensures that only calls to the methods in the following
packages get traced: methods in com.manning.model and its subpackages (note
the .. between model and *), methods in the com.manning.ui package but not its
subpackages, methods in the com.manning.util.ComplexComputation class, and
methods with a name starting in set in com.manning.database.Database. (See
chapter 3, tables 3.3 and 3.4, for more information on using wildcards to capture
methods and constructors.) In a similar way, you may use within() and within-
code() pointcuts to limit logging for join points occurring in the lexical scope of
classes and methods. The cflow() and cflowbelow() pointcuts are useful when
you want to perform logging only for the operations invoked from a certain sub-
system. The control-flow based pointcuts are also useful in limiting logging to
only the top-level operation in a recursive call stack.

 Now let’s modify the aspect to use the standard Java logging toolkit so that we
can use the features it offers, such as the ability to dynamically modify the log-
ging level. Note that we can introduce such a change to the whole system by
modifying just a few lines in one aspect. Without AspectJ, we would have to mod-
ify every log statement in the system. In listing 5.11, we show how you can use
the standard logging toolkit to perform logging that is identical in functionality
to that in listing 5.10.

160 CHAPTER 5
Monitoring techniques
import java.util.logging.*;
import org.aspectj.lang.*;

public aspect TraceAspectV2 {
 private Logger _logger = Logger.getLogger("trace");

 TraceAspectV2() {
 _logger.setLevel(Level.ALL);
 }

 pointcut traceMethods()
 : (execution(* *.*(..))
 || execution(*.new(..))) && !within(TraceAspectV2);

 before() : traceMethods() {
 if (_logger.isLoggable(Level.INFO)) {
 Signature sig = thisJoinPointStaticPart.getSignature();
 _logger.logp(Level.INFO,
 sig.getDeclaringType().getName(),
 sig.getName(),
 "Entering");
 }
 }
}

The aspect in listing 5.11 contains a logger object, and the constructor sets its
logging level to an initial value. This logging level is only the initial level; any
part of the system can later get hold of the “trace” logger object using Log-
ger.getLogger("trace") and modify its level. Therefore, before we perform the
actual logging, advice to the traceMethods() pointcut first checks if the current
logging level is such that the logp() method call will result in a log message. It
does this by calling isLoggable(). The check for the log level is needed for per-
formance reasons only. It ensures that we do not perform a wasteful operation in
assembling the log message if the message will not be logged. To perform the
actual logging, we invoke the logp() method on the logger object with the
appropriate log message and caller information.

 In section 5.1.2, we discussed why we want to use the logp() method to log
messages instead of log(). Another reason to use logp() is that calling the log()
method would cause the logging kit to deduce that the caller is the advice
instead of the advised method. This happens because the log() method uses the
call stack to infer the caller. In this example, the actual caller is the advice, but we
want the real caller of the logged method (that triggered the advice) to be shown

Listing 5.11 Tracing methods: the second version, using the standard logging toolkit

Obtaining
the logger
object

Initializing the
log level

Using logging
methods

Developing logging and tracing aspects 161
in the log message and not the advice—which just happens to be the caller due
to the addition of the logger aspect.

 We have a robust mechanism in AspectJ that addresses all these issues. It is
the thisJoinPointStaticPart object, which contains information about the cap-
tured join point’s class, method, precise source location, and so forth. The compiler
creates this information at compile time, and neither compiler optimization nor
the presence of the JIT/hotspot virtual machine alters this information. We use
the information contained in thisJoinPointStaticPart to obtain the method
and class name of the logged method. Please refer to chapter 4 (section 4.1) for
more details on using thisJoinPointStaticPart.

 Compiling this aspect with the shopping cart source code and running the
Test class results in output similar to this:

> ajc *.java
> java Test
Mar 30, 2003 12:56:18 AM Test main
INFO: Entering
Mar 30, 2003 12:56:18 AM Inventory <init>
INFO: Entering
Mar 30, 2003 12:56:18 AM Item <init>
INFO: Entering
Mar 30, 2003 12:56:18 AM Item <init>
INFO: Entering
Mar 30, 2003 12:56:18 AM Item <init>
INFO: Entering
Mar 30, 2003 12:56:18 AM Inventory addItem
INFO: Entering
Mar 30, 2003 12:56:18 AM Inventory addItem
INFO: Entering
Mar 30, 2003 12:56:18 AM Inventory addItem
INFO: Entering
Mar 30, 2003 12:56:18 AM ShoppingCart <init>
INFO: Entering
Mar 30, 2003 12:56:18 AM ShoppingCartOperator addShoppingCartItem
INFO: Entering
Mar 30, 2003 12:56:18 AM Inventory removeItem
INFO: Entering
Mar 30, 2003 12:56:18 AM ShoppingCart addItem
INFO: Entering
Mar 30, 2003 12:56:18 AM ShoppingCartOperator addShoppingCartItem
INFO: Entering
Mar 30, 2003 12:56:18 AM Inventory removeItem
INFO: Entering
Mar 30, 2003 12:56:18 AM ShoppingCart addItem
INFO: Entering

162 CHAPTER 5
Monitoring techniques
The output shows a message being logged as soon as the execution of the pro-
gram enters each method and constructor in the system. The toolkit also prints a
timestamp corresponding to each of the logged messages.

 Finally, let’s modify our aspect to use the log4j toolkit from Apache. This
example, like the earlier one, shows how easy it is to switch from one logging
toolkit to another when you use AspectJ for logging. Listing 5.12 shows the same
logging functionality implemented using the log4j logging toolkit instead of the
standard Java logging toolkit.

import org.apache.log4j.*;
import org.aspectj.lang.*;

public aspect TraceAspectV3 {
 Logger _logger = Logger.getLogger("trace");

 TraceAspectV3() {
 _logger.setLevel(Level.ALL);
 }

 pointcut traceMethods()
 : (execution(* *.*(..))
 || execution(*.new(..))) && !within(TraceAspectV3);

 before() : traceMethods() {
 if (_logger.isEnabledFor(Level.INFO)) {
 Signature sig = thisJoinPointStaticPart.getSignature();
 _logger.log(Level.INFO,
 "Entering ["
 + sig.getDeclaringType().getName() + "."
 + sig.getName() + "]");
 }
 }
}

The API for both toolkits is the same for the most part. Therefore, we need to
change only a few statements from our earlier version (the changes appear in bold
in the listing). Note that log4j does not have a logp() method; instead, the log()
method, along with the use of properties file, offers the equivalent functionality.
We encode the caller information in the message that is passed as an argument to
the log() method call. log4j requires a properties file that specifies the informa-
tion to be logged and the format for each log message. For the purpose of this test,
we used the following properties file (log4j.properties) to configure log4j:

Listing 5.12 Tracing methods: the third version, using the log4j toolkit

Developing logging and tracing aspects 163
log4j.rootCategory=DEBUG, dest1
log4j.appender.dest1=org.apache.log4j.ConsoleAppender
log4j.appender.dest1.layout=org.apache.log4j.PatternLayout

When we compile the aspect in listing 5.12 with the rest of our classes and run
the Test class, we see the following output:

> ajc *.java
> java Test
Entering [Test.main]
Entering [Inventory.<init>]
Entering [Item.<init>]
Entering [Item.<init>]
Entering [Item.<init>]
Entering [Inventory.addItem]
Entering [Inventory.addItem]
Entering [Inventory.addItem]
Entering [ShoppingCart.<init>]
Entering [ShoppingCartOperator.addShoppingCartItem]
Entering [Inventory.removeItem]
Entering [ShoppingCart.addItem]
Entering [ShoppingCartOperator.addShoppingCartItem]
Entering [Inventory.removeItem]
Entering [ShoppingCart.addItem]

The output is similar to that using the standard Java logging toolkit. You can
control the information being logged, such as the addition of a timestamp or the
format of the log messages, by modifying the properties file. Please refer to the
log4j documentation for more details.

5.4.2 Exceptions logging

Because exception throwing is usually considered an important event in the sys-
tem, logging such occurrences is typically desirable. Exception logging is an
extension of the tracing concept, except the focus is on exceptional conditions in
a program rather than execution of methods. The conventional way to log excep-
tions is to surround the interesting parts of code with a try/catch block and instru-
ment each catch block with a log statement. With AspectJ, it is possible to log
exceptions thrown by a method without any modification to the original code.

 In this section, we develop an aspect that enables the logging of thrown
exceptions in the system. As in the earlier section, we later modify the aspect
to use standard Java logging and log4j toolkit. Let’s begin with listing 5.13.
This aspect can log any method in the system that is returned by throwing an
exception. The version in listing 5.13 uses the good old System.err as the log-
ging stream.

164 CHAPTER 5
Monitoring techniques
import org.aspectj.lang.*;

public aspect ExceptionLoggerAspectV1 {
 pointcut exceptionLogMethods()
 : call(* *.*(..)) &&
 !within(ExceptionLoggerAspectV1);

 after() throwing(Throwable ex) : exceptionLogMethods() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.err.println("Exception logger aspect ["
 + sig.getDeclaringType().getName() + "."
 + sig.getName() + "]");
 ex.printStackTrace(System.err);
 }
}

The exceptionLogMethods() pointcut captures all the methods that need exception
logging. Here, we are defining this as a call to any method in the system. You can
modify this pointcut to include a subset of methods, as described in section 5.4.1.
The after throwing advice collects the thrown object as context. The advice uses
thisJoinPointStaticPart to log the information about captured join points.
Finally, it prints the stack trace of the thrown exception.

Let’s write a simple program (listing 5.14) to test our aspect.

public class TestException {
 public static void main(String[] args) {
 perform();
 }

 public static void perform() {
 Object nullObj = null;
 nullObj.toString();
 }
}

When we compile the TestException class along with ExceptionLoggerAspectV1
and run the test program, we get the following output:

> ajc *.java
> java TestException
Exception logger aspect [java.lang.Object.toString]

Listing 5.13 Logging exception: the first version, using System.err as the logging stream

Traced method
pointcut

 b

 c
Advice that logs any

exception thrown

 b

 c

Listing 5.14 TestException.java: a program that tests exception logging

Developing logging and tracing aspects 165
java.lang.NullPointerException
 at TestException.perform(TestException.java:8)
 at TestException.main(TestException.java:3)
Exception logger aspect [TestException.perform]
java.lang.NullPointerException
 at TestException.perform(TestException.java:8)
 at TestException.main(TestException.java:3)
Exception in thread "main" java.lang.NullPointerException
 at TestException.perform(TestException.java:8)
 at TestException.main(TestException.java:3)

The output shows that NullPointerException, which was thrown due to calling the
toString() method on a null object inside the perform() method, is logged. Since
this exception isn’t caught by the perform() method, the exception is propagated to
the caller. The resulting exception thrown by perform() is also logged by our aspect.

 Since you are more likely to use one of the available logging toolkits, listing 5.15
shows the second version of the same aspect, this time using the standard Java log-
ging toolkit. The portions in bold reflect changes compared to listing 5.14.

import java.util.logging.*;
import org.aspectj.lang.*;

public aspect ExceptionLoggerAspectV2 {
 Logger _logger = Logger.getLogger("exceptions");

 ExceptionLoggerAspectV2() {
 _logger.setLevel(Level.ALL);
 }

 pointcut exceptionLogMethods()
 : call(* *.*(..)) && !within(ExceptionLoggerAspectV2);

 after() throwing(Throwable ex) : exceptionLogMethods() {
 if (_logger.isLoggable(Level.WARNING)) {
 Signature sig = thisJoinPointStaticPart.getSignature();
 _logger.logp(Level.WARNING,
 sig.getDeclaringType().getName(),
 sig.getName(),
 "Exception logger aspect", ex);
 }
 }
}

The aspect in listing 5.15 is similar to the one in listing 5.13. We log the excep-
tion using the Logger.logp() method that takes a Throwable object as an

Listing 5.15 Logging exception: second version, using Java’s standard logging toolkit

166 CHAPTER 5
Monitoring techniques
argument. As you can see in the listing, to switch from System.err to the stan-
dard Java logging toolkit we only need to modify the aspect. When we compile
the TestException class with the aspect in listing 5.15 and run the test program,
we get the following output:

> ajc *.java
> java TestException
Feb 26, 2003 12:05:19 AM java.lang.Object toString
WARNING: Exception logger aspect
java.lang.NullPointerException
 at TestException.perform(TestException.java:8)
 at TestException.main(TestException.java:3)
Feb 26, 2003 12:05:19 AM TestException perform
WARNING: Exception logger aspect
java.lang.NullPointerException
 at TestException.perform(TestException.java:8)
 at TestException.main(TestException.java:3)
Exception in thread "main" java.lang.NullPointerException
 at TestException.perform(TestException.java:8)
 at TestException.main(TestException.java:3)

The output is similar to that using System.err except for the addition of time-
stamps and the formatting of the message.

 Finally, let’s modify our aspect to use the log4j toolkit, since it is another log-
ging toolkit available for your use. Listing 5.16 shows that changing the underly-
ing logging toolkit is easy with AspectJ. The portions in bold indicate changes
compared to listing 5.15.

import org.apache.log4j.*;
import org.aspectj.lang.*;

public aspect ExceptionLoggerAspectV3 {
 Logger _logger = Logger.getLogger("exceptions");

 ExceptionLoggerAspectV3() {
 _logger.setLevel(Level.ALL);
 }

 pointcut exceptionLogMethods()
 : call(* *.*(..)) && !within(ExceptionLoggerAspectV3);

 after() throwing(Throwable ex) : exceptionLogMethods() {
 if (_logger.isEnabledFor(Level.ERROR)) {
 Signature sig = thisJoinPointStaticPart.getSignature();
 _logger.log(Level.ERROR,
 "Exception logger aspect ["

Listing 5.16 Logging exception: third version, using the log4j toolkit

Common logging idioms 167
 + sig.getDeclaringType().getName() + "."
 + sig.getName() + "]", ex);
 }
 }
}

All we needed to modify from listing 5.15 was the advice for using the equivalent
API for log4j instead of the standard Java logging toolkit’s API. When we compile
TestException with this aspect and run the test program, we get the following out-
put, which is similar to the output from the aspects using System.err and the stan-
dard Java logging toolkit (we use the same log4j.properties from section 5.4.1):

> ajc *.java
> java TestException
Exception logger aspect [java.lang.Object.toString]
java.lang.NullPointerException
 at TestException.perform(TestException.java:8)
 at TestException.main(TestException.java:3)
Exception logger aspect [TestException.perform]
java.lang.NullPointerException
 at TestException.perform(TestException.java:8)
 at TestException.main(TestException.java:3)
Exception in thread "main" java.lang.NullPointerException
 at TestException.perform(TestException.java:8)
 at TestException.main(TestException.java:3)

These examples show how writing a simple aspect can ensure consistent logging
and how noninvasive it is to change the underlying toolkit. The modularization
of the crosscutting concern of logging helps solve one part of the architect’s
dilemma discussed in chapter 1; you no longer have to make an upfront decision
about the logging toolkit and logging strategy. This is important because even if
you make such a decision in the beginning, you may have to change your mind if
a new technology that better suits your needs becomes available. With AspectJ,
such a change in toolkits necessitates only local changes to the logging aspects,
leaving the rest of your system intact.

5.5 Common logging idioms

Idioms are solutions to simple, recurring problems. While developing a logging
solution, you will encounter a few common issues, such as logging the opera-
tion’s context, beautifying the output for human consumption, considering the
precedence for other aspects, and changing the logging toolkit. In this section,
we discuss common idioms that should guide you in your attempts to introduce
logging in your system.

168 CHAPTER 5
Monitoring techniques
5.5.1 Logging the method parameters

Often, you not only want to log the method calls but also the invoked object and
the method parameters. Implementing this requirement is easily accomplished
by using the thisJoinPoint reference. In each advice body, a special thisJoin-
Point object is available that contains the information about the captured join
point and its associated context.

 The aspect in listing 5.17 modifies the TraceAspectV1’s before advice to also
log the method parameters.

import org.aspectj.lang.*;

public aspect TraceAspectV1 {
 pointcut traceMethods()
 : (execution(* *.*(..))
 || execution(*.new(..))) && !within(TraceAspectV1);

 before() : traceMethods()&& !execution(String *.toString()){
 Signature sig = thisJoinPointStaticPart.getSignature();

 System.err.println("Entering ["
 + sig.getDeclaringType().getName() + "."
 + sig.getName() + "]"
 + createParameterMessage(thisJoinPoint));
 }

 private String createParameterMessage(JoinPoint joinPoint) {
 StringBuffer paramBuffer = new StringBuffer("\n\t[This: ");
 paramBuffer.append(joinPoint.getThis());

 Object[] arguments = joinPoint.getArgs();
 paramBuffer.append("]\n\t[Args: (");
 for (int length = arguments.length, i = 0; i < length; ++i) {
 Object argument = arguments[i];
 paramBuffer.append(argument);
 if (i != length-1) {
 paramBuffer.append(',');
 }
 }
 paramBuffer.append(")]");
 return paramBuffer.toString();
 }
}

Listing 5.17 TraceAspectV1.java: modified to log method parameters

Augment
pointcut

that avoids
infinite

recursion

Formatting of the log message

Common logging idioms 169
We use the !execution(String *.toString())pointcut to avoid the recursion
that will be caused by the execution of the toString() methods. Without this
pointcut, the logger will prepare the parameter string in createParameter-
Message() when it calls toString() for each object. However, when toString()
executes, it first attempts to log the operation, and the logger will prepare a
parameter string for it again when it calls toString() on the same object, and
so on, causing an infinite recursion. By avoiding the join points for toString()
execution, we avoid infinite recursion, leading to a stack overflow. Note that
the !within(TraceAspectV1) pointcut is not sufficient here because it will only
capture the calls to toString() methods; the execution of the methods will still
be advised.
The createParameterMessage() helper method returns a formatted string con-
taining the object and arguments.

Now when we compile the classes in our shopping cart example with this aspect
and execute the Test class, the output of logging includes the invoked object and
the method parameters, similar to this output:

> ajc *.java
> java Test
Entering [Test.main]
 [This: null]
 [Args: ([Ljava.lang.String;@1eed786)]
Entering [Inventory.<init>]
 [This: Inventory@e48e1b]
 [Args: ()]
Entering [Item.<init>]
 [This: Item: null]
 [Args: (1,30.0)]
Entering [Item.<init>]
 [This: Item: null]
 [Args: (2,31.0)]
Entering [Item.<init>]
 [This: Item: null]
 [Args: (3,32.0)]
Entering [Inventory.addItem]
 [This: Inventory@e48e1b]
 [Args: (Item: 1)]
Entering [Inventory.addItem]
 [This: Inventory@e48e1b]
 [Args: (Item: 2)]
Entering [Inventory.addItem]
 [This: Inventory@e48e1b]
 [Args: (Item: 3)]
Entering [ShoppingCart.<init>]
 [This: ShoppingCart@30c221]
 [Args: ()]

 b

 c

170 CHAPTER 5
Monitoring techniques
Entering [ShoppingCartOperator.addShoppingCartItem]
 [This: null]
 [Args: (ShoppingCart@30c221,Inventory@e48e1b,Item: 1)]
Entering [Inventory.removeItem]
 [This: Inventory@e48e1b]
 [Args: (Item: 1)]
Entering [ShoppingCart.addItem]
 [This: ShoppingCart@30c221]
 [Args: (Item: 1)]
Entering [ShoppingCartOperator.addShoppingCartItem]
 [This: null]
 [Args: (ShoppingCart@30c221,Inventory@e48e1b,Item: 2)]
Entering [Inventory.removeItem]
 [This: Inventory@e48e1b]
 [Args: (Item: 2)]
Entering [ShoppingCart.addItem]
 [This: ShoppingCart@30c221]
 [Args: (Item: 2)

You cannot easily log the method arguments if you use the version of
the Logger.logp() method that takes an arbitrary Object array as an
argument. The reason is that the method requires that you supply the
message in the format specified by the MessageFormat class. You can
implement this if you know the method argument types, position, and
count. However, this is not very practical for a general-purpose logging
scheme. The solution, therefore, is to build your own message that con-
tains the argument information before you pass it to the logger object.

5.5.2 Indenting the log statements

With nested operations, it is desirable that the logging mimic the operation
depth. For stream output, this usually means indenting the log messages based
on their depth in the transaction. Without such information, the output is hard
to decipher.

 The basic idea behind implementing the indentation functionality is simple:
keep a state corresponding to the call depth of the currently executing operation
and prefix each log message with spaces proportionate to the call depth. The
concrete implementation of this idea can be implemented in various ways. You
have already seen one way in chapter 2, listing 2.9. In this section, we examine
another implementation that offers the advantage of reusability.

 The abstract aspect shown in listing 5.18 encapsulates the indentation func-
tionality. By simply extending this aspect, a logging aspect can introduce the
indentation effect.

NOTE TO
STANDARD

JAVA
LOGGING

KIT USERS

Common logging idioms 171
package logging;

public abstract aspect IndentedLogging {
 protected int _indentationLevel = 0;

 protected abstract pointcut loggedOperations();

 before() : loggedOperations() {
 _indentationLevel++;
 }

 after() : loggedOperations() {
 _indentationLevel--;
 }

 before() : call(* java.io.PrintStream.println(..))
 && within(IndentedLogging+) {
 for (int i = 0, spaces = _indentationLevel * 4;
 i < spaces; ++i) {
 System.out.print(" ");
 }
 }
}

The IndentedLogging aspect declares an abstract pointcut, loggedOperations(),
that the subaspects should define to capture the operations they are logging.
The IndentedLogging aspect simply increments the indentation level before exe-
cuting the join points captured by loggedOperations() and decrements after
their execution. By providing a before advice to the java.io.PrintStream.
println() method and appending spaces corresponding to the indentation level
to the System.out stream, we get the indentation effect. If you are using a log-
ging kit instead of System.out, you will want to modify this advice, perhaps
replacing it with an around advice, to get the indentation effect.

 Now let’s change the aspect, TraceAspectV1, from listing 5.10 so that the log
output will be indented. Listing 5.19 modifies the aspect by making it a subaspect
of IndentedLogging that indents the log messages according to the call depth.

import org.aspectj.lang.*;

import logging.*;

public aspect TraceAspectV4 extends IndentedLogging {

Listing 5.18 IndentedLogging.java: a reusable base aspect to get indentation behavior

Listing 5.19 TraceAspectV4.java: adding the indentation effect to the log

172 CHAPTER 5
Monitoring techniques
 protected pointcut loggedOperations()
 : (execution(* *.*(..))
 || execution(*.new(..))) && !within(IndentedLogging+);

 before() : loggedOperations() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("Entering ["
 + sig.getDeclaringType().getName() + "."
 + sig.getName() + "]");
 }
}

In addition to extending the abstract aspect IndentedLogging, the aspect in list-
ing 5.19 renames the tracedMethods() pointcut to loggedOperations() to match
the abstract pointcut in IndentedLogging.

 When we compile all the classes and aspects together and run the test pro-
gram, we get the following output:

> ajc *.java logging\IndentedLogging.java
> java Test
Entering [Test.main]
 Entering [Inventory.<init>]
 Entering [Item.<init>]
 Entering [Item.<init>]
 Entering [Item.<init>]
 Entering [Inventory.addItem]
 Entering [Inventory.addItem]
 Entering [Inventory.addItem]
 Entering [ShoppingCart.<init>]
 Entering [ShoppingCartOperator.addShoppingCartItem]
 Entering [Inventory.removeItem]
 Entering [ShoppingCart.addItem]
 Entering [ShoppingCartOperator.addShoppingCartItem]
 Entering [Inventory.removeItem]
 Entering [ShoppingCart.addItem]

By simply extending a reusable aspect, we have the required indentation effort.
You will see additional examples of the IndentedLogging aspect in part 3.

5.5.3 Aspect precedence
Generally, you want the logging aspects to have the highest precedence. This
way, the logging aspect’s before advice executes before any of the other aspects’
before advice, and the logging aspect’s after advice executes after the other
aspects’ after advice. You can implement this requirement by making the logging
aspects dominate all other aspects by using the following construct:

declare precedence LoggingAspect, *;

Common logging idioms 173
If multiple logging aspects are present and if they dominate all other aspects,
the precedence between the logging aspects themselves is not determined. If
such precedence between logging aspects is important to your system, you can
make certain logging aspects dominate other specific logging aspects. However,
this can get complex. A better solution is to design the logging aspects so that
only one logging aspect advises each join point. In practice, you rarely need such
precise control over the logging aspect precedence.

5.5.4 Changing the underlying logging mechanism

In most situations, you will be using just one logging API. However, in certain
situations you may need to support multiple underlying logging APIs. One
common situation calling for such support is during the development of
components, when you may need to support the possibility of multiple log-
ging packages.

 The simplest solution is to use a wrapper logging toolkit such as the Jakarta
Commons Logging toolkit (see http://jakarta.apache.org/commons/logging.html).
This kit provides an abstract logging API and delegates the actual logging to
standard Java logging toolkit, log4j, or System.out.

 The other solution is to separate the definition of logging join points and the
advice to those join points. You can then write multiple aspects advising the join
points in a toolkit-specific manner. In building the system, you can then include
the aspects of the required toolkit. Any changes to the definition of logging join
points are isolated from the logging toolkit implementation.

 Yet another choice is to use around advice to bridge between multiple APIs.
With such a style, you advise each invocation of the source logging method and
bypass it with the call to the target logging kit. You need only one such bridge for
all of the projects. However, this approach is more complex, and you should not
consider it as your first choice.

5.5.5 Using logging in a multithreaded environment

If a logger is shared among multiple threads, the log messages from each thread
will be intertwined, making the output difficult to analyze. A simple solution is to
keep a logger associated with each thread object. There are many ways to man-
age this association. One way is to keep the logger in a thread-specific storage
provided by the ThreadLocal class. In the logging advice, you first check for a
logger object associated with the current thread. If no such logger is present, you
create a new one and make the association. In either case, you use the thread-
specific logger to log the messages.

http://jakarta.apache.org/commons/logging.html

174 CHAPTER 5
Monitoring techniques
 You must take special care to ensure that loggers corresponding to a defunct
thread do not loiter around. If you use thread-local storage, when the thread ter-
minates, the associated logger no longer has a strong reference to reach it
(unless some other part of the system also keeps a reference to it), and it becomes
a candidate for garbage collection. In other cases, you could advise the thread
termination join point to make the logger a candidate for garbage collection.

5.6 Extending logging for other usage

With very little modification, the basic logging mechanism can be used for other
purposes, such as testing, profiling, recovering lost data, and logging user
actions. AspectJ-based solutions for such requirements offer essentially the same
benefits that we discussed for logging: modularization, noninvasiveness, ease of
evolution, and ease of understanding. Let’s look at a couple of other ways you
can extend the basic logging mechanism.

5.6.1 Testing

One way to ensure the accuracy of programs is to use regression testing, in which
the testing apparatus checks for the preservation of the output of a specified set
of input across all iterations of a module’s evolution. You provide a set of input
that covers a sufficient range of possible options. Each time you test the pro-
gram, you use this same input, and the output is expected to be the same. With
AspectJ, you can log the output as well as the intermediate steps that have been
taken while performing the operation. Then you can compare the actual log with
the expected log to check for the preservation of the system behavior.

 Reproducing bugs is often a hard task—you see a bug, but you do not know
what actions led to it. Often, the least-suspected step is the cause of the bug. Dur-
ing the QA phase, you can enable the system to log the steps that are followed
during testing. When a bug appears, you can get a much better idea about the
cause of the bug by looking at the log of the operations performed prior to
encountering the bug. In the final shipped product, you can simply remove the
logging aspect by excluding it from the final build. Of course, you can imple-
ment all this functionality using traditional techniques, which require embed-
ding logging into each module.

Extending logging for other usage 175
5.6.2 Profiling

Profiling a system means collecting the information about the time spent by each
operation in the system. By extending the core AspectJ-based logging concepts,
you can create profiling functionality without needing invasive changes.

 The conventional profiling solutions often depend on using specific tools,
and they sometimes need to execute the applications in a special VM in order to
gather the profile data. These requirements make profiling practical only in the
implementation phase, and it is seldom used in a deployed situation. With
AspectJ-based profiling, you can use profiling in the deployed system as well,
without the need for any special tools or VM, just by embedding the profiling
logic in separate aspects. A typical profiling process often needs to gradually
focus on certain parts of the system to gather more detailed timing information.
The modular, plug-and-play approach of AspectJ adds noninvasive modification
to the focus of profiling by limiting the modification to only the profiling aspect.
For example, you can change the list of classes and methods that will be profiled
by modifying the pointcuts in the profile aspect.

 A simple way to implement profiling is to augment the invocation timestamp
of each log message. You will need to provide both before and after advice to the
profiled methods and log their invocation time. Although you could also use an
around advice, using both before and after advice is often cheaper due to the
cost associated with the creation of the around advice and the unwrapping of the
return value. You can use the call depth idea presented in section 5.5.2 to ensure
the correct matching of the entry and exit log statements. You can write a log
analyzer to extract and process the log information to provide the profiling data,
such as the duration of the execution of the methods and the number of invoca-
tions of the methods.

 An alternative approach to using timestamped logging messages for the pur-
pose of profiling is to keep the profile data in memory. Under this scheme, you
save the profile information inside an object, typically a map, in the profile
aspect. Since a thisJoinPointStaticPart object is the same to all the invocations
of a join point, you may use it as the key for the profile data map and store the
profile information that is associated with the join point. The map’s values con-
tain typical profile data, such as the cumulative average, the longest and shortest
duration, and the invocation count. In the before and after advice, instead of
logging the timing information to an output stream, you can update the profile
data held inside the map. Periodically, or in response to some request, the profil-
ing aspect supplies the data to interested parties. As with the other logging-

176 CHAPTER 5
Monitoring techniques
based aspects, you can choose to exclude it in the final shipped product without
making any system wide changes.

 You can also extend AspectJ-based profiling functionality to implement modu-
lar dynamic service-level monitoring. For example, let’s say that you are using
some third-party services such as credit-card approval processing over the Inter-
net. You may have an agreement that provides you with certain performance
guarantees. You can collect the time before and after each invocation of the ser-
vices. When the service gets near or below the agreed level, you can alert the pro-
vider as well as use the information to collect penalties, if the agreement so
specifies. If you are on the other side—the provider of such services—you can use
the profile information to create alerts when the level of service approaches the
agreed level. Such alerts may help you fix the problem before it becomes critical.

 Overall, AspectJ-based logging provides a simple way to introduce profiling
and other related functionality to your system without needing a full commit-
ment to the continued use of AspectJ. Try it during the development phase. Start
getting the benefits. If you want to use it in the deployed system, great—you con-
tinue to get the benefits of profiling in the deployed system. If, however, you do
not want aspects in your deployed system yet, you just need to exclude the
aspects during the final build. You still had the benefit of AspectJ-based profiling
during development and the almost zero-cost option to continue/discontinue its
usage in the deployed system.

5.7 Summary

Software professionals and management often look for a “killer application,”
one that is so well suited that it makes adopting a new technology worthwhile
despite the risks. The reason behind this conservative approach is to balance the
considerable investment associated with any new technology against the benefits
it offers. A killer application supposedly provides enough benefits to outweigh
the risks. However, such applications are hard to find. Add to that the difficulty
in measuring largely qualitative benefits, such as productivity improvements,
cleaner design, ease of evolution, and improved quality. Such qualitative benefits
make proving the benefits of a new approach to a skeptic very challenging. The
more practical approach is to find ways to reduce the investment involved with
the new technology. If you can achieve such reduction, you no longer have to
wait until you see a big bonanza of benefits.

 AspectJ-based logging is a low-investment, low-risk way to begin using
AspectJ. The aspects and idioms presented in this chapter may be all that you

Summary 177
need to start your logging adventure. Logging aspects also offer a unique plug-
and-play nature. If this chapter convinced you of the benefits of using AspectJ
for logging, you may start out by simply using it for debugging and tracing.
Later, you can demonstrate to your team the benefits you have experienced,
which may lead them to use AspectJ as well. At any point, including during the
final shipment, you can exclude the AspectJ and logging aspects. The overall
effect is that you can start using AspectJ with minimal risk.

 Once you commit to AspectJ-based logging, you will start seeing even more
benefits. You can use AspectJ-based solutions for core logging tasks that go
beyond debugging and tracing. Implementation of such logging concerns is now
nicely modularized. This solution leads to increased flexibility, improved accu-
racy, and better consistency. It saves you from the laborious and boring task of
writing nearly identical log statements in code all over your system. The use of
AspectJ also makes the job of choosing logging toolkits an easy task. You can
start with any one that you are familiar with, and feel comfortable that changing
the choice later on will require modifying only a few statements.

 Therefore, while not a killer application, logging just may be the perfect way
to introduce AspectJ to yourself and your organization.

6Policy enforcement:
system wide contracts
This chapter covers
■ Understanding AspectJ policy enforcement

patterns
■ Enforcing EJB programming restrictions using

AspectJ
■ Enforcing Swing policies using AspectJ
178

AspectJ-based policy enforcement overview 179
Imagine a situation where you are convinced that public access to a data mem-
ber of a class is not a good idea. Or you have just finished reading the Enter-
prise JavaBeans (EJB) specification and realize that the specification prohibits
calling the Abstract Window Toolkit (AWT) methods from a bean. Clearly, you
would like to ensure that the projects you work on do not violate certain princi-
ples and restrictions. What are your choices? You could send email messages to
your team asking them to check for these violations, or you could add this infor-
mation to a knowledge base. But these solutions are hard to maintain. Even if
you somehow manage to fix any violations, perhaps through regular code
reviews, what if you start a new project with a new team? Educate them again?
OK, you get the point.

 Policy enforcement is a mechanism for ensuring that system components follow
certain programming practices, comply with specified rules, and meet the
assumptions. For example, say you want to enforce that EJBs do not call AWT
code. If there is no enforcement, the error may go undetected during develop-
ment and show up only in the deployed system. How would you enforce this pol-
icy today? Probably you won’t enforce it at all. Policy enforcement is a good
concept without a good implementation mechanism.

 AOP/AspectJ provides a way of enforcing policies that requires little human
diligence and ensures a continual enforcement. This chapter presents an aspect-
oriented solution that illustrates how you can detect violations by simply compil-
ing your code along with a few prewritten aspects. You can also reuse those
aspects and apply them to other projects without incurring any additional devel-
opment cost. Policy enforcement with AspectJ falls in the developmental aspect
category. You can include these aspects during the development phase to help
detect policy violations, and for deployment, you can exclude them without
affecting the core system behavior. This can be part of an incremental adaptation
of AspectJ; you don’t have to commit to using AspectJ in the deployed system in
order to get the benefits from it.

6.1 AspectJ-based policy enforcement overview

Using policy enforcement and AspectJ relieves you from relying totally on devel-
opers’ diligence. Consider the issue of log() versus logp() (see chapter 5, sec-
tion 5.1.2). During your initial encounter with logging toolkits, you may not
have recognized the inefficiency problem associated with using log(). Now when
you do realize that you should use logp(), how do you enforce it? With AspectJ, it
becomes a matter of writing a simple aspect such as the following:

180 CHAPTER 6
Policy enforcement: system wide contracts
import java.util.logging.*;

public aspect DetectLogUsage {
 declare warning : call(void Logger.log(..))
 : "Consider Logger.logp() instead";
}

Now when you compile this aspect along with the rest of your classes, you get
warnings like this one:

F:\aspectj-book\ch06\section6.1\Test.java:12
 Consider Logger.logp() instead

1 warning

Once this aspect is added to your project’s build facility (such as a makefile or an
Ant build file), you never have to remind your team members to avoid using
log(); the aspect will do the job for you.

 Figure 6.1 shows the overall scheme of policy enforcement using AspectJ. The
policy-enforcement concerns are implemented as aspects that identify any viola-
tion by the core concern implementation.

➥

Figure 6.1 The overall scheme of policy enforcement using AspectJ. Aspects
implementing policy enforcement are compiled together with the core concern
implementation. The policies are enforced in two ways: compile-time errors and
warnings and auditing of the violations during runtime.

The current solution and its challenges 181
The solution presented in this chapter opens a new possibility for application
frameworks and library creators. Instead of (or in addition to) shipping the doc-
umentation specifying the restrictions, such products can now ship aspects cap-
turing parts of the specification along with their framework. Developers using
the framework can detect most violations at compile time by simply including
the aspects in their build system. The aspects detect other violations at runtime
with a clear message indicating where things went wrong. Aspects, since they are
program constructs, also serve as precise documents themselves. These aspects
will then watch the users “over their shoulder” to check if the assumptions made
by the library developers are indeed satisfied. Avoiding incorrect usages will lead
to a better quality application based on those libraries and frameworks, resulting
in higher user satisfaction.

6.2 The current solution and its challenges

So, if enforcing policies is so beneficial, why don’t we do it more often? Sure,
everybody talks about contract enforcement and implementing best practices,
but few implement systematic enforcement. The most common mechanisms
used today are documentation, training, and code reviews. The fundamental
problem is that these mechanisms are expensive, time-consuming, and still
error-prone. Let’s take a brief look at a few current solutions and the problems
associated with each:

■ Documenting the restrictions—Perhaps the most popular way of enforcing poli-
cies is documenting usage restrictions. These documents of the “watch out”
flavor are fine for a small piece of software or for software with few restric-
tions. For complex software, however, this is an error-prone approach.

■ Embedding policy-enforcement code—Including code to enforce the policies
and checking the fulfillment of assumptions is another common way to
implement policy enforcement. Implementing policy enforcement in this
way is cumbersome, considering the magnitude of effort required for system-
wide enforcement logic instrumentation. Further, the “policies along with
the core concepts” approach does not offer any enforcement for the parts
of the system that do not implement such checks.

■ Using violation-detection tools—For a popular framework such as EJB, it is
possible that either the application server vendor or a third party will pro-
vide a tool that performs policy enforcements. You can then pass your code
through such a tool and check for the violations. An EJB compiler could
also instrument code, perhaps optionally to catch runtime violations.

182 CHAPTER 6
Policy enforcement: system wide contracts
When such tools are available, they usually do a good job. For other situa-
tions, however, you are pretty much on your own.

The problems with most of these solutions are:
■ Lack of reusability—Because their implementations do not carry over from

one project to another, this means implementing such enforcement all
over again. Most programmers do not like to perform repetitive activities.

■ Tangling of policy code with the core logic—Policy enforcement, being a system-
wide concern, crosscuts multiple modules. The code for policy-enforcement
concerns is tangled with the core-concern implementation, causing confu-
sion between the two. It may not be clear from the code if a check per-
forms some core requirement or policy enforcement.

■ Policy code scattering—Because policy code is scattered all over the modules,
if you need to change a policy you must modify every module. In addition,
when you create new modules, you must remember to code all the policies.
This makes consistent implementation a difficult task.

■ Cumbersome implementation—Current policy-enforcement implementation
results in significant work—both initially and during maintenance. The
amount of work often outweighs the benefit obtained.

Because of these issues, most systems include little policy-enforcement logic in
a systematic way, if they include any at all. Code reviews are usually a substi-
tute for policy enforcement. Although such reviews have a definite place in
the software-development process, using them for mundane tasks like simple
policy checks is wasteful. Code reviews should instead focus on the subtler
nuances of implementation.

 To sum up, current mechanisms make policy enforcement inelegant and
expensive to implement. Therefore, the failure of policy enforcement lies in the
way it is implemented, not in its concepts.

6.3 Enforcement using AspectJ

Fundamentally, policy enforcement requires flagging conditions that violate cer-
tain principles and assumptions, such as accessing the state of a class in a thread-
unsafe way or from nonfriendly classes. The detection and correction of these
conditions ensure the quality of the overall system. Policy enforcement using
AspectJ involves creating a few aspects that detect all usages that are in violation
of the required policies.

Enforcement using AspectJ 183
 You can use many of the aspects developed in this chapter directly without
any modifications at all. This reusability makes aspects-based policy enforcement
highly cost-effective.

6.3.1 Policy enforcement implementation choices
You have two choices for implementing policies: compile-time checking and
runtime checking. Each kind of enforcement has its appropriate usages and lim-
itations; AspectJ helps with both types. In this section, we study the implementa-
tion of both compile-time checking and runtime checking.

Compile-time enforcement
Compile-time checking implies performing policy-violation checks during the
compilation phase. Compile-time checks are very powerful—they allow you to
perform checks even before running the system. In strongly typed languages
such as Java and C++, compilers already perform certain compile-time check-
ing, such as type matching, access control, and so forth. With AspectJ, you can
take such checking to a new level; you can specify custom checks. Now the com-
piler is your best friend; it can save you from a potentially time-consuming bug-
fix cycle.

 While its early detection capability is powerful, compile-time checking has
limitations on the kinds of checks that it can perform. Certain kinds of behavior
can be checked only during the execution of a program. For example, checking
for ranges in values of certain arguments can be performed only at runtime.

 Implementing compile-time enforcement involves the use of declare error
and declare warning constructs. These mechanisms provide a way to detect the
usage of a specified pointcut during the compilation phase and issue an error or
a warning. One important thing to note is that the pointcuts used in this kind of
declaration must be statically determinable pointcuts. This means you cannot
use constructs such as cflow() for this purpose. You can learn more about these
constructs in chapter 3.

Runtime enforcement
In contrast to compile-time checking, runtime checking is performed during sys-
tem execution. In languages such as Java, the VMs already perform certain run-
time checks, such as cast-correctness and null-reference access checks. Runtime
policy enforcement is a similar idea except that the constraints expressed are
custom specified.

 Upon detecting a policy violation at runtime, the usual approach is to log the
violation along with the context under which it occurred. In case the system

184 CHAPTER 6
Policy enforcement: system wide contracts
malfunctions, the logs may offer insight to potential precursors. Even without
malfunctions, periodically examining the logs can provide useful information to
developers so that they can avoid potential problems in the next release—a sort
of built-in QA.

 Runtime enforcement involves verifying the policies using AspectJ’s dynamic
crosscutting constructs. For instance, you can write advice to detect the violation
of Swing’s thread-safety rule and print a message. Since such checking detects
the violations after the fact, logging for auditing purposes is usually the best
option. For certain major violations, it may be desirable to let the system shut
down gracefully to avoid further damage. The choice of action ultimately
depends on the nature of the violation.

NOTE Why issue warnings when you can fix it? In many situations, it is possible
to fix policy violations using AspectJ instead of issuing warnings or er-
rors at either runtime or compile time. However, fixing the problem
will force you to include the aspects in the deployed system, and that
will remove the choice of not using AspectJ in the deployed system. If
you want to preserve that choice, it is important that the policy enforce-
ments do not change the core program behavior in any way. They
should simply add notifications to inform you of policy violations.

6.3.2 The role of policy enforcement during the product lifecycle

Policy enforcement has different roles in different parts of the product lifecycle. In
this section, we examine how an AspectJ-based solution helps realize those roles.

 During the development phase, AspectJ-based policy enforcement helps by
immediately flagging policy violations. During this phase, you also develop your
own policies. You should strive to develop reusable, general-purpose policies so
that you can carry them to other projects. Policies also help in training develop-
ers who are new to a technology—acting as a kind of mentor.

 For internal testing, you should keep your build configuration the same as
the development build configuration by including policy-enforcement aspects.
Then the policy-violation logs produced during testing can help developers fix
the problems.

 During the maintenance phase too, you should keep the build configuration
identical to the development build. Policy-enforcement aspects can then ensure
that the modifications and new code do not violate the existing policies, because
the aspects will catch the compile-time violations during the compilation phase

Policy enforcement patterns 185
and the runtime violations during the testing of the new functionality. Essen-
tially, these policies serve as a constant, automatic code review.

 In a deployed system, you can choose whether to include the policy-enforcement
aspects or exclude them; the decision depends largely on your comfort level with
AspectJ. If included, those aspects serve as a logging mechanism for a post-analysis
of the violations encountered within the deployed application. One reason you
may want to remove policy-enforcement aspects is to avoid any performance
penalties associated with the policy checks in the critical paths.

 If you are planning to remove policy enforcement because you do not want to
use AspectJ in a deployed system, you should pay particular attention to two
issues when you create your aspects: First, ensure that you separate pure Java
code from aspects so that you can easily remove the aspects and compile the rest
of the code without using the AspectJ compiler. In particular, you should avoid
putting nested aspects inside classes (we will look at an example of a nested
aspect in section 6.4.2) by putting the enforcement aspects into separate source
files. Second, be careful that your policy-enforcement aspects do not change the
core system behavior in any way. Otherwise, your deployed system’s behavior will
be different from that of the tested system.

6.4 Policy enforcement patterns

With a few typical patterns, you can implement policy enforcement using AspectJ.
In this section, we introduce a set of examples to illustrate these patterns. These
examples then serve as building blocks that you can use to create polices for spe-
cific kinds of applications, such as EJB-based and Swing-based systems.

6.4.1 Detecting the violation of a specific call pattern

Consider a situation where, after learning about the logging kits, you have decided
that using System.out or System.err is a poor way to perform logging. You may
convey this to your team, and you may do a fine job the first time by simply search-
ing through your code base for System.out or System.err and replacing those
instances with a logging toolkit such as log4j. The problem, however, is that a few
months later, some developer, perhaps a new person on your team, starts using
System.out. Until you perform another search, it will go undetected.

 Using AspectJ, we can write a simple aspect, shown in listing 6.1, that will
spot the calls to System.out.println() and System.err.println() at compile time,
and issue appropriate warnings. If we include this simple aspect in our build sys-
tem, it will catch any violations immediately.

186 CHAPTER 6
Policy enforcement: system wide contracts
aspect DetectSystemOutErrorUsage {
 declare warning : get(* System.out) || get(* System.err)
 : "Consider Logger.logp() instead";
}

Our aspect, per se, does not detect call to methods such as System.out.println().
We instead simply detect access to out or err members in the System class and
presume that the code is accessing these fields for printing a message. This
makes it possible to detect violations at compile time itself. When we compile our
code, we get a warning for each access to such fields:

F:\aspectj-book\ch06\section6.4.1\Test.java:7
 Consider Logger.logp() instead

F:\aspectj-book\ch06\section6.4.1\Test.java:9
 Consider Logger.logp() instead

2 warnings

We can specify when this warning should be issued by identifying only a selected
set of packages or classes in the within() pointcut. We can combine multiple
within() pointcuts to specify a precise control:

 declare warning : (get(* System.out) || get(* System.err))
 && within(com.manning.ui..*)
 : "Consider Logger.log() instead";

In this code, we are specifying that the violation detection should be limited only
to all subpackages of the com.manning.ui package.

 After a reasonable period of issuing warnings, you can mark such usage as an
error by simply changing declare warning to declare error, as shown in the fol-
lowing snippet. Now the aspects will force the developer to fix the problem
immediately. Be sure to inform your team members before you make such a
change, so as not to catch them by surprise!

 declare error : get(* System.out) || get(* System.err)
 : "Consider Logger.log() instead";

You can extend this usage to detect many such violations. This solution is a lot
more powerful than just using the @deprecation JavaDoc tag. First, the AspectJ
way of implementing such usage-pattern violations modularizes the policy con-
trol; there is only one aspect that controls the enforcement as opposed to chang-
ing JavaDoc comments for each method. Compared to @deprecated, which
allows only execution-side control, the AspectJ-based solution offers caller-side

Listing 6.1 An aspect that detects usage of System.out or System.err

➥

➥

Policy enforcement patterns 187
control by enabling you to specify that certain selected clients will get the error
or warning. With deprecation mechanisms, all you can implement is a global
mandate (which you can implement using AspectJ as well). Finally, it provides an
easy way to switch from compile-time warnings to hard errors.

6.4.2 Implementing flexible access control

Access control is a kind of enforcement that limits the access to certain functional-
ity. Consider the shopping cart example in chapter 5. It appears that the pro-
grammer intended to allow the manipulation of the ShoppingCart class only
through the ShoppingCartOperator class, which ensures correct inventory
updates. However, what is there to prevent direct access to a ShoppingCart
object? Leaving the situation as it is downgrades the programmer’s “intention”
to a programmer’s “wish.” Java’s access control mechanism simply isn’t enough
in this case. What we need here is a way to implement access control that will dis-
allow calls to certain operations on a ShoppingCart object from anywhere except
in ShoppingCartOperator. With AspectJ, writing a simple aspect such as the one
in listing 6.2 ensures the intended access control.

public aspect ShoppingCartAccessAspect {
 declare error
 : (call(* ShoppingCart.add*(..))
 || call(* ShoppingCart.remove*(..))
 || call(* ShoppingCart.empty(..)))
 && !within(ShoppingCartOperator)
 : "Illegal manipulation to ShoppingCart;\n
 only ShoppingCartOperator may perform such operations";
}

Compiling this aspect along with the rest of the code will detect any illegal access
and issue a compile-time error like this:

F:\aspectj-book\ch06\section6.4.2\v1\Test.java:16
 Illegal manipulation to ShoppingCart;
 only ShoppingCartOperator may perform such operations

1 error

With pure Java, this type of complex access control—allowing communication
only between collaborating classes—is not possible. Consider, for example, the
implementation of a factory pattern to create objects of a Product class. You want

Listing 6.2 ShoppingCartAccessAspect.java: enforcing access control

➥

➥
➥

188 CHAPTER 6
Policy enforcement: system wide contracts
only the factory to create the Product objects. With Java’s access-control mecha-
nism, the best you can do is force the Product class and the factory class to reside
in the same package and assign package access to the Product class’s construc-
tors. This is over-restrictive and, in some cases, impossible to implement. For
example, if the factory is in a package and the Product class is in a subpackage, it
is not possible to implement the pattern correctly. Further, other classes in the
same package can freely create Product objects. The usual solution is to simply
let the Product class’s constructors have public access and document the restric-
tion. If a developer misses this documentation, you are out of luck.

 AspectJ enforcements can define access control in far more precise terms
than those offered by the standard Java access specifiers of public, protected,
package (default), and private. For package access, for example, Java offers only
two categories: the owner package and other packages. However, you may need
to define access at a much finer package granularity—such as user interface, net-
working, and database—so that you can control which packages can access a cer-
tain class or method.

 With AspectJ, you can implement and enforce the needed access control
properly. The usage is similar to friend access in C++. With AspectJ, you can
implement friend-functionality in Java as well as far more powerful types of
access control. For instance, let’s go back to the previous discussion of the factory
pattern that creates Product objects. In listing 6.3, the Product class contains a
nested aspect that implements the policy that only ProductFactory can create
Product objects.

public class Product {
 public Product() {
 // constructor implementation
 }

 // product methods

 static aspect FlagNonFactoryCreation {
 declare error
 : call(Product.new(..))
 && !within(ProductFactory+)
 : "Only ProductFactory can create Product";
 }
}

Listing 6.3 The Product class, with an aspect that controls its creation

Policy enforcement patterns 189
The nested aspect declares that invoking any of the Product class’s constructors
from any class other than ProductFactory or one of its subclasses will result in a
compile-time error:

F:\aspectj-book\ch06\section6.4.2\factory\Test.java:5
 Only ProductFactory can create Product

1 error

We could further restrict the access to only ProductFactory’s createProduct()
methods simply by replacing the within() pointcut with a withincode(). See
chapter 3, table 3.8, for more details on the withincode() pointcut.

declare error
 : call(Product.new(..))
 && !withincode(Product ProductFactory.createProduct(..))
 : "Only ProductFactory.createProduct() can create Product";

Now if we call a constructor of the Product class from anywhere other than any
createProduct() method in ProductFactory or its subclass, we will get a compile-
time error.

 Note that we are using a nested aspect, FlagNonFactoryCreation, to imple-
ment the access control in our example. If you have adopted AspectJ as your
project’s programming language, this is often a better approach since it tightly
connects the enforced class and enforcing aspect. Such tight coupling allows you
to update the enforcement aspect when the implementation of the access-
controlled class changes. However, when you use this approach, you lose the
choice of compiling the project with a pure Java compiler for deployment builds.
If such a choice is important to you, you should move the aspect to a separate file
that can be excluded from the final build.

 Our examples have shown implementing precise access control using
AspectJ. You can use this pattern for implementing the access control that is suit-
able for your purposes.

6.4.3 Enforcing the best-practices principles

Over the years, the programming community in general, and most likely you
and your team specifically, have developed a few best-practices techniques. We
use these techniques to protect ourselves against potential problems that may
not be easy to spot otherwise. With experience, the list of best-practices tech-
niques, as well as your confidence in their utility, grows. Policy-enforcement tech-
niques can detect violations of these best practices. Since best practices are
simply programming idioms and patterns to help avert potential trouble, their

➥

190 CHAPTER 6
Policy enforcement: system wide contracts
violation may not always be an immediate issue. It may be perfectly fine to vio-
late them as long as you understand what you are doing. Policy enforcement for
best practices, therefore, simply warns developers of potential traps instead of
issuing hard errors. For example, even though one of the basic object-oriented
principles is to not expose the implementation, such exposure will not cause any
observable problems immediately. However, over time you will start to see that
such exposure will lead to brittle systems; flagging such violations will help you
make an informed choice.

 Minimally, the rule against exposing internal implementation translates to
assigning a nonpublic access to any (nonfinal) members. Although this principle
is commonly accepted, its enforcement still relies on education and code reviews.
Reviews usually involve searching through the code base either manually or with
a tool. Maybe, with effort, you can initially fix all such violations, but after a time
some developer forgets this principle and adds a public field. Such a violation of
your policy will go undetected until another review or, worse, another bug. The
reason for the lack of better enforcement of this policy is that it is a crosscutting
concern—every part of the code has to adhere to it. In listing 6.4, the aspect
warns the developer about using public access to any nonfinal field.

aspect DetectPublicAccessMembers {
 declare warning :
 get(public !final * *) || set(public * *) :
 "Please consider using nonpublic access";
}

The aspect, per se, does not detect the presence of public fields in a class. How-
ever, it detects read or write access to any such field. The pointcut get(public
!final * *) captures read access to any nonfinal public field of any class. The
use of !final prevents the code from issuing warnings for access to final fields,
which usually isn’t considered bad practice. Similarly, the pointcut set(public * *)
captures all write access to any public field of any class. In case of write access, we
have omitted !final, because Java’s access check will take care of issuing an error
for writing to a final field.

 Now when the developer compiles this aspect along with the rest of classes,
he will get warnings similar to the following:

F:\aspectj-book\ch06\section6.4.3\Test.java:7
 Please consider using nonpublic access

Listing 6.4 An aspect that detects public access to members

➥

Example: implementing EJB programming restrictions 191
F:\aspectj-book\ch06\section6.4.3\Test.java:21
 Please consider using nonpublic access

2 warnings

The developer can then assign appropriate nonpublic access control to the field and
may introduce getter and/or setter methods. The next time someone writes code
that uses access to a public field, this aspect will catch the violation immediately.

 Try this aspect in your own system; you might get some surprises.

6.5 Example: implementing EJB programming
restrictions

The EJB specification imposes several programming restrictions on a bean. For
example, it does not allow you to make AWT operations, directly work with net-
working resources, or use thread-synchronization primitives from a bean. These
restrictions ensure that application servers can utilize nodes in a server cluster
without any behavioral change in the system. Since most of these situations occur
during user-heavy loads, you may not run into these situations during the develop-
ment phase, and failure may occur only in real deployment situations and stress
testing. Please refer to section 24.1.2 of the EJB 2.0 specification for more details.1

 Our way to detect EJB violations, like most of the solutions presented in this
book, works in a plug-and-play style and is reusable. Simply compiling your code
with the aspect in listing 6.5 gets you the benefit. You can use AspectJ to catch
violations at compile time and runtime in a nonintrusive manner, as we dis-
cussed in section 6.3.1. So now let’s dive straight into an aspect. Listing 6.5
shows an EJB policy-enforcement aspect that enforces two rules: no AWT code
from EJBs and no nonfinal static field access.

import javax.ejb.*;

public aspect DetectEJBViolations {
 pointcut uiCalls() : call(* java.awt.*+.*(..));

 declare error : uiCalls() && within(EnterpriseBean+)
 : "UI calls are not allowed from EJB beans.\n
 See EJB 2.0 specification section 24.1.2";

➥

1 For information on EJB antipatterns, please refer to Bruce Tate et al, Bitter EJB (Greenwich, CT: Man-
ning, 2003).

Listing 6.5 DetectEJBViolations.java: ensuring EJB policy enforcement

➥

192 CHAPTER 6
Policy enforcement: system wide contracts
 before() : uiCalls() && cflow(call(* EnterpriseBean+.*(..))) {
 System.out.println("Detected call to AWT from enterprise bean");
 System.out.println("See EJB 2.0 specification section 24.1.2");
 Thread.dumpStack();
 }

 // Similar implementation of other programming restrictions:
 // Socket, file i/o, native library loading, keyboard input
 // thread methods access, reflection etc.

 pointcut staticMemberAccess() :
 set(static * EnterpriseBean+.*);

 declare error : staticMemberAccess()
 : "EJBs are not allowed to have nonfinal static variables.\n
 See EJB 2.0 specification section 24.1.2";
}

If you are involved in development using EJB, you can use the aspect in listing 6.5
as a template and extend it for other restrictions. Once you have the enforce-
ment aspects ready, you can compile them along with your other classes and
watch how much time it saves you in the laborious task of reviewing the code,
and how it ensures better quality for your deployed system. Either you will see
violations (and then you can fix the problems) or you will see no violations (and
you can feel more confident about your code).

 As an example, consider listing 6.6, which violates some of the EJB program-
ming restrictions.

package customer;

import javax.ejb.*;
import javax.naming.*;

public abstract class ViolationBean implements EntityBean {
 private static int _subscriptionCount = 0;

 // ...

 public void addSubscription (String subscriptionKey) {
 try {
 Context ic = new InitialContext();
 // ...
 } catch (Exception ex) {
 javax.swing.JOptionPane.showMessageDialog(null,
 "Exception while adding subscription");

Listing 6.6 ViolationBean.java: a bean that violates the EJB rules

➥

Example: implementing EJB programming restrictions 193
 ex.printStackTrace();
 }
 _subscriptionCount++;
 }

 // ...
}

When we compile the ViolationBean class along with the DetectEJBViolations
aspect, we get the following output:

> ajc DetectEJBViolations.java customer*.java
F:\aspectj-book\ch06\section6.5\customer\ViolationBean.java:7

 EJBs are not allowed to have non-final static variables.
 See EJB 2.0 specification section 24.1.2
F:\aspectj-book\ch06\section6.5\customer\ViolationBean.java:14

 UI calls are not allowed from EJB beans.
 See EJB 2.0 specification section 24.1.2
F:\aspectj-book\ch06\section6.5\customer\ViolationBean.java:18

 EJBs are not allowed to have non-final static variables.
 See EJB 2.0 specification section 24.1.2

3 errors

Let’s now get into the details of how the DetectEJBViolations aspect implements
various enforcement policies. In the next two sections, we look at each of the
enforced policies separately.

6.5.1 Implementing “no AWT”
The first EJB restriction we will examine disallows calls to AWT methods. In the
following code snippet, we use a pointcut to capture join points that correspond
to calls to AWT methods, and declare the occurrence of any such join point in
any subclass of EnterpriseBean to be an error:

 pointcut uiCalls() : call(* java.awt..*+.*(..));

 declare error : uiCalls() && within(EnterpriseBean+)
 : "UI calls are not allowed from EJB beans.
 See EJB 2.0 specification section 24.1.2";

This code simply says:

If a call to any method in any class extending any class in java.awt or its
subpackage is made from within any class implementing javax.
ejb.EnterpriseBean, declare it an error.

➥

➥

➥

➥

194 CHAPTER 6
Policy enforcement: system wide contracts
This is probably over-restrictive because it is OK to access classes such as
java.awt.Rectangle. Nevertheless, we would rather err on the side of safety. It
is easy to later exclude a few classes from restrictions by modifying the uiCalls()
pointcut to not capture the join points for the classes to be excluded. When the
aspect detects a violation, it prints a message like the following:

F:\aspectj-book\ch06\section6.5\customer\ViolationBean.java:16
 UI calls are not allowed from EJB beans.

See EJB 2.0 specification section 24.1.2

However, what if we do not call code in AWT directly, but rather through another
class? First, we should try to enumerate all the classes and packages that make UI
calls and include those classes in the uiCalls() pointcut. This way, we will catch
any violations at compile time and will not have to wait until we run the system
for problems to occur. As a last resort, we can add the following advice in the
aspect to check whether any of the methods’ control flow led to a call in AWT.
Bear in mind, however, that this advice may not always catch the violations, since
the code path leading to the violating calls may not be executed in a particular
test sequence:

 before() : uiCalls() && cflow(call(* EnterpriseBean+.*(..))) {
 System.out.println("Detected call to AWT from enterprise bean");
 System.out.println("See EJB 2.0 specification section 24.1.2");
 Thread.dumpStack();
 }

In a similar fashion, you can implement other restrictions, such as no calls to
Thread’s methods, socket creation, System.in access, native library loading, or
reflection use. For each such restriction, you will need to provide a pointcut defi-
nition to capture the join points corresponding to the restricted operations. You
will also need to include a declare error clause for those pointcuts. To capture
indirect calls, you will have to advise the join point occurring in the control flow
of the bean method and log the violation.

6.5.2 Implementing “no nonfinal static field access”

Another EJB programming restriction disallows the use of nonfinal static fields
by a bean. This ensures the correctness of those fields when a bean moves from
one VM to another. With AspectJ, you can indirectly capture this restriction by
capturing write access to such fields. This solution does not implement the pol-
icy in exact terms, but it implements the spirit of it. The following snippet
defines a pointcut that will capture write access to any static field in any subclass
of EnterpriseBean and declare the access to be an error:

➥

Example: implementing Swing policies 195
 pointcut staticMemberAccess() :
 set(static * EnterpriseBean+.*);

 declare error : staticMemberAccess()
 : "EJBs are not allowed to have nonfinal static variables.
 See EJB 2.0 specification section 24.1.2";

When the AspectJ compiler detects a write access to a static field, it gives a compile-
time error, as follows:

F:\aspectj-book\ch06\section6.5\customer\ViolationBean.java:7
 EJBs are not allowed to have nonfinal static variables.

See EJB 2.0 specification section 24.1.2
F:\aspectj-book\ch06\section6.5\customer\ViolationBean.java:20

 EJBs are not allowed to have nonfinal static variables.
See EJB 2.0 specification section 24.1.2

The output shows that compiling the aspect with the rest of the system results in
compile-time errors upon discovering that a nonfinal static variable is being
modified. The developer is then forced to address the problem (which may
involve a simple fix or may require design modifications) before the system can
be compiled without errors again.

 Note that if a developer forgets to mark a static field as final, and if she never
modifies that field, not even initializing it, then that field behaves as a final field,
since its value is never changed. You need not be concerned about such “actually
final” fields since their value will remain the same throughout the lifecycle of the
bean and will not affect the system when a bean moves from one VM to another.

 Now that you understand how to enforce EJB policies with the DetectEJBVio-
lations.java aspect, you can compile it with your EJB classes and watch it go to
work. With such an aspect watching your project all the time, you can be sure
that all the restrictions captured by the enforcement aspect will no longer be
present in your system. It will also ensure the quality of your code. Since the
enforcement aspect does all the heavy work, you can focus your code reviews on
more complex issues, such as optimization or business logic.

6.6 Example: implementing Swing policies

Because Swing is a single-threaded library, its correct usage requires accessing or
modifying any state of the Swing components only from the AWT event-dispatching
thread.2 Swing’s single-thread rule is a contract between the Swing components

➥

➥

➥

2 Please refer to http://java.sun.com/docs/books/tutorial/uiswing/overview/threads.html if you are not al-
ready familiar with Swing’s thread-safety rule and ways to ensure adherence to it.

http://java.sun.com/docs/books/tutorial/uiswing/overview/threads.html

196 CHAPTER 6
Policy enforcement: system wide contracts
and the user of those components. The methods invokeLater() and invokeAnd-
Wait() in java.awt.EventQueue (or javax.swing.SwingUtilities) provide a way
to route calls through the event-dispatching thread.

 In this section, we examine a way to detect these violations. In chapter 9, we
will implement a way to use aspects to automatically fix the problem.

6.6.1 Understanding the problem

First, let’s look at a simple program in listing 6.7 that illustrates a violation of
this policy.

import java.awt.*;
import javax.swing.*;
import javax.swing.table.*;

public class Test extends JFrame {
 public static void main(String[] args) {
 Test appFrame = new Test();
 appFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 DefaultTableModel tableModel = new DefaultTableModel(4,2);
 JTable table = new JTable(tableModel);

 appFrame.getContentPane().add(table);

 appFrame.pack();
 appFrame.setVisible(true);

 System.out.println("Frame is now visible");

 tableModel.setValueAt("[0,0]", 0, 0);
 tableModel.removeRow(2);
 }
}

The two lines in bold violate the rule requiring that, once the components are
put onto the screen (using pack() and setVisible()), any access or modification
must take place only from the event-dispatching thread by calling either invoke-
Later() or invokeAndWait() in the main thread. In our case, we are calling the
setValueAt() and removeRow() methods on the table model. In practice, this
type of violation will occur as a result of calls made from another user thread,
such as a thread reading data from a network or database.

Listing 6.7 Test code violating the policy

Example: implementing Swing policies 197
 The solution for this problem is to wrap the operation performed in a class
implementing Runnable and then use EventQueue.invokeLater() or Event-
Queue.invokeAndWait() to route the operation through the event-dispatching
thread. Note, as of JDK 1.3, the same-named methods in the class Swing-
Utilities are simply a wrapper around the EventQueue class’s methods. List-
ings 6.8 and 6.9 show the classes needed to set the value of a table cell and
remove a table row, respectively. You would use these classes instead of the
highlighted method calls in listing 6.7. Using these classes along with Event-
Queue.invokeLater() or EventQueue.invokeAndWait() ensures thread-safe
access. Listing 6.8 implements the Runnable interface for setting the values in
TableModel in a thread-safe way.

import javax.swing.table.*;

public class TableValueSetter implements Runnable {
 TableModel _model;
 Object _value;
 int _row;
 int _column;

 public TableValueSetter(TableModel model, Object value,
 int row, int column) {
 _model = model;
 _value = value;
 _row = row;
 _column = column;
 }

 public void run() {
 _model.setValueAt(_value, _row, _column);
 }
}

The TableValueSetter class’s constructor takes all the parameters needed to
invoke the operation. The run() method simply invokes the setValueAt()
method using those parameters. Similarly, TableRowRemover in listing 6.9 imple-
ments Runnable to allow the routing of DefaultTableModel.removeRow().

Listing 6.8 An example of a class that sets the value of a table cell

198 CHAPTER 6
Policy enforcement: system wide contracts
import javax.swing.table.*;

public class TableRowRemover implements Runnable {
 DefaultTableModel _model;
 int _row;

 public TableRowRemover(DefaultTableModel model, int row) {
 _model = model;
 _row = row;
 }

 public void run() {
 _model.removeRow(_row);
 }
}

The developer will need to use these classes in conjunction with Event-
Queue.invokeLater() or EventQueue.invokeAndWait(). Note that you will need to
implement a class for each operation or combination of operations. For exam-
ple, you will need a class for adding a row, adding a column, and so on. However,
this requirement is present even when you don’t use an AspectJ-based solution.
Once you have these classes implemented, you need to ensure that every part of
the code uses these classes. For example, you should replace the last two lines in
the Test class with the following lines:

EventQueue.invokeLater(new TableValueSetter(tableModel,
 "[0,0]", 0, 0));
EventQueue.invokeLater(new TableRowRemover(tableModel, 2));

6.6.2 Detecting the violation

We will now develop a dynamic checking aspect to catch any violation of
Swing’s single-thread rule. The fundamental idea is quite simple: check if any
call accessing a Swing component’s state is called through a thread other than
the event-dispatching thread. In listing 6.10, DetectSwingSingleThreadRuleVio-
lationAspect flags the call to the Swing component’s methods from a nonevent-
dispatching thread.

import java.awt.*;
import javax.swing.JComponent;

Listing 6.9 An example of a class that removes a table row

Listing 6.10 An aspect that detects the Swing single-thread rule

Example: implementing Swing policies 199
public aspect DetectSwingSingleThreadRuleViolationAspect {
 pointcut viewMethodCalls()
 : call(* javax..JComponent+.*(..));

 pointcut modelMethodCalls()
 : call(* javax..*Model+.*(..))
 || call(* javax.swing.text.Document+.*(..));

 pointcut uiMethodCalls()
 : viewMethodCalls() || modelMethodCalls();

 before() : uiMethodCalls() && if(!EventQueue.isDispatchThread()) {
 System.err.println(
 "Violation: Swing method called from nonAWT thread"
 + "\nCalled method: "
 + thisJoinPointStaticPart.getSignature()
 + "\nCaller: "
 + thisEnclosingJoinPointStaticPart.getSignature()
 + "\nSource location: "
 + thisJoinPointStaticPart.getSourceLocation()
 + "\nThread: " + Thread.currentThread()
 + "\nChange code to use EventQueue.invokeLater() "
 + "or EventQueue.invokeAndWait()\n");
 }
}

The aspect DetectSwingSingleThreadRuleViolationAspect defines a pointcut
uiMethodCalls() and advises it to check whether the caller thread of the cap-
tured join points is the event-dispatching thread. Let’s examine the aspect in
more detail:
The pointcut viewMethodCalls(), which captures the method invocations on a
view object, is defined as a call to any method of JComponent or its subclasses.
The pointcut modelMethodCalls(), which captures operations on a model, is
defined as a call to any method of any class with a name ending in Model or its
subclasses. We also capture the call to javax.swing.text.Document or its subclass,
since our property-based pointcut that requires the name to end in Model would
not capture its methods. By the way, notice the importance of following a consis-
tent naming convention; if you name all your models ending in Model, then cap-
turing join points based on name becomes easy.
The pointcut uiMethodCalls() combines the viewMethodCalls() and modelMethod-
Calls() pointcuts to capture all the method calls that are involved in Swing’s thread-
safety rule. We could have defined the uiMethodCalls() to directly capture all the
required methods calls, but the refactoring helps improve the overall understanding.

Calls to UI
component methods

 b

Calls to UI
model methods

 c

Calls to UI
methods

 d

Advice
that flags
violations

 e

 b

 c

 d

200 CHAPTER 6
Policy enforcement: system wide contracts
In the advice to the uiMethodCalls() pointcut, if any join points are found that
have not been called from the event-dispatching thread, a message will be
logged with the information about the call, the caller method, and the caller
thread. This will help the developer analyze the root cause of the problem. In
practice, instead of simply printing a message onto a console, you will want to
log it into some file; there is little point in telling the user that your program did
something wrong.

When we compile the classes and aspect together and run the test program, we
get the following output:

> ajc *.java
> java Test
Frame is now visible
Violation: Swing method called from nonAWT thread
Called method: void javax.swing.table.DefaultTableModel.
 setValueAt(Object, int, int)
Caller: void Test.main(String[])
Source location: Test.java:20
Thread: Thread[main,5,main]
Change code to use EventQueue.invokeLater()
 or EventQueue.invokeAndWait()

Violation: Swing method called from nonAWT thread
Called method: void javax.swing.table.DefaultTableModel.
 removeRow(int)
Caller: void Test.main(String[])
Source location: Test.java:21
Thread: Thread[main,5,main]
Change code to use EventQueue.invokeLater()
 or EventQueue.invokeAndWait()

We see from the output that both the violations that accessed the Swing compo-
nent from the main thread are flagged by DetectSwingSingleThreadRuleViolation-
Aspect.

6.7 Summary

As you introduce AspectJ to your project, one of the problems you may face is
resistance to committing to AOP and AspectJ. People will demand proof that
AspectJ indeed is worth the effort. This could become a Catch-22 situation—you
can’t show its usefulness to your project because you can’t use it, and you won’t
be able to use it unless you show its usefulness. Well, policy enforcement offers
you a way to overcome this issue. Even if your organization or team isn’t yet com-
mitted to AspectJ, you can still use AspectJ-based enforcement to improve your
personal productivity. Then you can show what you have gained to others. If that

 e

➥

➥

➥

➥

Summary 201
convinces your colleagues of the benefits that AspectJ offers, very well. Other-
wise, continue using the aspects in your own development world and simply
exclude them in the shipment builds. The plug-and-play nature of policy-
enforcement aspects provides you an opportunity to play with AspectJ without
requiring a full commitment.

 Start with the aspects presented in this chapter. The next time you encounter
a novel programming wisdom or best practice, consider writing an enforcement
aspect encapsulating the knowledge. Over time, you will have a repository of
policy-enforcement aspects that will help you in all your projects. When you start
using a new framework, you can create policy-enforcement aspects specifically
targeted to the framework. If you are in a mentoring role, you can provide your
aspects to your team. You will then no longer have to sit down and repeat the
policies with each team member.

 AspectJ offers a simple and yet powerful way of implementing system wide
policy-enforcement concerns. The policy-enforcement aspects you develop are
reusable, lowering your per-project development cost. These aspects use the
AspectJ compiler to enforce as many policies as possible at compile time and use
dynamic crosscutting to understand the runtime violations in more detail. With
such aspects in place, you are assured of better-quality code and you can spend
your time on more “exciting” issues. Note, though, that the mechanisms presented
here do not substitute for code reviews. However, with policy enforcement in place,
the code reviews can focus on the subtler nuances of the implementations.

 Once you start enforcing policies in a significant way by using AspectJ, you
will find AspectJ to be your best friend; it always watches you, reminds you of
common pitfalls, and lets you spend time on the more creative aspects of life
(yes, pun intended).

7Optimization:
pooling and caching
This chapter covers
■ Resource pooling template
■ Database connection pooling
■ Thread pooling
■ XSLT stylesheet caching
202

The typical case 203
Resource pooling—the recycling of resources that are expensive to create and dis-
card—is one of the most common techniques for improving system performance.
Without resource pooling, systems spend a good amount of time creating and
destroying resources. The conventional methods of resource pooling require that
you explicitly code the pooling logic within each module that deals with the cre-
ation and destruction of resources. Since many modules may be performing those
tasks, this approach can be cumbersome. Further, a resource pooling feature may
need tuning at various times during its evolution, and if it is a part of a reusable
subsystem, tuning may be needed in each system in which it is implemented
because usage patterns will differ. The conventional solution requires modifica-
tions to all affected modules in such cases, making it a crosscutting concern. AOP
can help modularize this crosscutting concern by encapsulating the pooling logic
in an aspect.

 This chapter examines aspect-oriented resource pooling techniques. First we
will create a template to demonstrate a plug-and-play style of resource pooling,
and then we will add examples that implement database connection and thread
pooling based on that template. Using the generic template, you should be able
to extend the idea to other kinds of resources, such as JMS or TCP/IP connection
objects. Since caching is closely related to resource pooling, we will also intro-
duce AspectJ-based caching by using an example of caching XSLT stylesheet
transformer objects.

7.1 The typical case

The simplest method of resource usage is to create a resource when there is a
need for it, utilize it, and then dispose of it when it is no longer needed. The fol-
lowing snippet shows a skeleton example of resource usage that does not use any
resource pooling:

Resource resource
 = new Resource(<resource_creation_parameters>);
// or
// Resource resource
// = resourceFactory.createResource(<resource_creation_parameters>);

...
// use the resource object
...

resource.dispose();

204 CHAPTER 7
Optimization: pooling and caching
Figure 7.1 shows a sequence diagram for the same scheme of creating, using,
and destroying a resource.

 This usage pattern has a simple resource lifecycle—create-use-dispose—and
it works fine with resources that are inexpensive to create and discard. However,
certain kinds of resources, such as database connections, socket connections, and
threads, are time-consuming to create and discard. With a simple database oper-
ation such as querying the existence of a certain record, for example, the cre-
ation and destruction of a database connection may take a few seconds, whereas
the operation itself may take only a few milliseconds. Resource pooling becomes
particularly important for such resources, where the overhead of creating and
disposing of the resource may far outweigh the time required to actually perform
the core task.

Figure 7.1 Typical resource usage in the absence of any pooling. You create resources
just in time to serve the requests, use them, and dispose of them after their usage. Any
subsequent use requires creating a new resource.

The typical case 205
7.1.1 Return, reuse, recycle: The role of resource pooling

Resource pooling is used to keep the resources around instead of discarding
them. Many resources with significant creation time can be recycled. When you
need the resource again, instead of creating a new one, simply reuse an earlier
one. For example, in a database application, instead of creating and destroying
the connection when you need to perform a set of operations, you could obtain
an existing connection object from a connection pool. You would also return the
connection to the pool after using it, instead of destroying it.

 Figure 7.2 shows the typical static structure of a system that uses resource pooling.
 For the basic implementation of a resource pool, you need two things:

■ A method of obtaining the required resources from a pool
■ A way to relinquish a resource to the pool once you no longer need it

Listing 7.1 shows a typical resource pool API that provides the basic functionality
of obtaining a resource and then releasing it back to the pool.

public interface ResourcePool {
 public Resource getResource(ResourceDescription rd);

 public boolean putResource(Resource r);
}

The getResource() method attempts to obtain a resource with a description that
matches the ResourceDescription argument. If there is no matching resource,

Listing 7.1 A typical resource pool interface

Figure 7.2 The structure of a resource pool, resource, and client. The resource pool owns the
resources in it, and the client leases a resource from it.

206 CHAPTER 7
Optimization: pooling and caching
this method returns null. The putResource() method puts resource r into the
resource pool. If the pool cannot accept the resource, it should indicate so by
returning false.

 Let’s consider a way we could use this interface for resource pooling. The follow-
ing snippet shows a typical usage of a resource pool to obtain and release resources:

// resPool object of type ResourcePool is constructed elsewhere
Resource resource
 = resPool.getResource(rd);
if (resource == null) {
 resource
 = resourceFactory.createResource(rd);
}

...
// use resource object
...

if (resPool.putResource(resource) == false) {
 resource.dispose();
}

When a client needs a resource, it first attempts to obtain one from the resource
pool by using getResource() to look for a resource with the description rd. If the
pool cannot provide a matching resource, the client falls back to the normal
mechanism and creates a new resource either directly or through a factory. The
client then uses either the resource obtained from the pool or the freshly created
one. When the client is finished with the resource, instead of releasing it, the cli-
ent returns it to the resource pool. That way, when a resource is needed the next
time, the pool can provide it. If the pool does not accept a resource, the client
calls dispose() to discard the resource.

 Figure 7.3 depicts the scenario from the earlier snippet in a sequence diagram.
 In summary, resource pools provide a way for you to recycle resources—which

means you avoid the cost of creating and destroying a new resource every time
you need one. The result is improved overall system performance.

7.1.2 Resource pooling issues

When resource pooling is implemented in conventional ways, it leads to several
problems common to a crosscutting concern. You are undoubtedly familiar with
the issues of code tangling and scattering by now, so let’s examine a couple of
other issues in a bit more detail:

■ Space/time tradeoff—While resource pooling reduces the time it takes to
obtain a new resource, this benefit comes at a cost; the pooled resources

The typical case 207
consume extra memory and other system resources. This is known as a
space/time tradeoff. A system designer must enable resource pooling only for
the modules where the benefit of improved speed outweighs the cost of
extra space. However, such details are seldom known during the initial
design phase. During the product lifecycle, subsystems may need to switch
resource pooling off and on in certain modules, depending on their usage
patterns. It is also often desirable to replace one pool implementation with
another to better match the requirements of the system. With conventional
pooling techniques, either of these scenarios may require changing most
or all of the modules that use pooling.

■ Need for upfront decision making—Whether to introduce resource pooling
early on is the architect’s dilemma. On one hand, using a simple scheme
that does not involve resource pooling may lead to a faster development
cycle. On the other hand, introducing resource pooling later may be too
invasive. Further, the need for resource pooling may not be evident until
after the completed system has been profiled. The current pooling solu-

Figure 7.3 Typical interaction of resource usage in a resource pooling scheme

208 CHAPTER 7
Optimization: pooling and caching
tions mandate choosing between an early decision to use pooling or imple-
menting time-consuming code changes throughout the system when
pooling is later introduced.

As you will see next, the AspectJ-based solution offers all the benefits of resource
pooling without having to deal with these issues—you can then have your cake
and eat it too.

7.2 Diving into the pool using AspectJ

The goal of AspectJ-based resource pooling is to create an aspect that transforms
the simple resource usage template in listing 7.1 to a solution that uses pooling
in the least invasive manner possible. In particular, the solution should not
require any change on the client side, making it possible to add, remove, or
modify the resource pooling without any system-wide changes. In a way, with this
plug-and-play approach to resource pooling, you can dive right in without mak-
ing a big splash. In this section, we examine a solution that builds on top of any
available resource pooling implementation.

7.2.1 Designing a template aspect

The overall scheme for the resource pooling aspect is quite simple. All you need
to do is create an aspect that advises the resource creation and destruction point-
cuts with resource pooling logic.

 We will develop a template to help you understand the solution at an abstract
level without getting bogged down in resource-specific details. You can use this
template as the basis for AspectJ-based pooling of any kind of resource by simply
mapping elements in the template to the actual participating entities. For exam-
ple, you can replace Resource in the template with Connection to introduce data-
base connection pooling. Figure 7.4 shows the overall relationship between the
resource pooling aspect and the rest of the system.

 The participating entities in this solution are the same as the ones in the con-
ventional solution: Resource, ResourcePool, and ResourceDescription. For par-
ticipating join points, we are mainly interested in two pointcuts: one to capture
resource creation and one to capture resource destruction. The first pointcut
captures the join points at which we want to get a resource from the pool instead
of creating it. Such a pointcut typically captures calls to constructors or creation
methods of the resource factory. The second pointcut captures the resource
destruction join points so that we can try to return the resource to the pool

Diving into the pool using AspectJ 209
instead of destroying it. Such a pointcut typically captures the calls to the meth-
ods in the resource class that release the resource.

7.2.2 Implementing the template aspect

Let’s take a closer look at the implementation of the resource-pooling template.
First, we revisit the sequence diagram in figure 7.1 that depicted the resource
usage without pooling and identify the join points that need to be advised to
introduce pooling. Figure 7.5 shows the pointcuts and the advice needed at the
join points captured by the pointcuts.

 The template of the resource pooling aspect in listing 7.2 advises the resource
creation and destruction join points to use resource pooling.

public aspect ResourcePoolingAspect {
 private ResourcePool _rpool = new ResourcePoolImpl();

 pointcut resourceCreation(ResourceDescription rd)
 : <creation-pointcut-definition>;

 pointcut resourceDestruction(Resource r)
 : <destruction-pointcut-definition>;

 Resource around(ResourceDescription rd) : resourceCreation(rd) {
 Resource resource = _rpool.getResource(rd);
 if (resource == null) {
 resource = proceed(rd);
 }
 return resource;
 }

Figure 7.4 The relationship between all entities participating in resource pooling in a system. The
ResourcePoolingAspect applies to all clients that create or dispose resources. (We show only
one client for simplicity.)

Listing 7.2 The template of the resource pooling aspect

Pointcut capturing
resource creation
join points

 b

Pointcut capturing resource
destruction join points c

Advice
resource

creation join
points

 d

210 CHAPTER 7
Optimization: pooling and caching
 void around(Resource r) : resourceDestruction(r) {
 if (! _rpool.putResource(r)) {
 proceed(r);
 }
 }
}

The pointcut resourceCreation() captures all join points that create the resource.
Typically, it captures constructors of the resource class that is being created or
the creation methods of the factories for the resource. The pooling mechanism
in step 3 must identify the desired resource it wants to obtain from the pool. To

Advice
resource
destruction
join points

 e

 b

Figure 7.5 The pointcuts and advice needed to realize resource pooling. This diagram resembles
figure 7.1, except that it superimposes the information for concern-weaving elements. We show only
one client classifier role for simplicity.

Example 1: database connection pooling 211
facilitate this, the pointcut also collects the context at the join point, rd, that
identifies the resource that is to be created.
The pointcut resourceDestruction() captures all join points that discard the
resource. Typically, it captures methods like close() on resources. Since the
resources that need pooling tend to be expensive, it is common to have an
explicit method to release the resource rather than rely on a garbage collector to
do it. This join point also collects the context at the join point, r, that identifies
the resource that is to be released so that the pool can acquire it.
The around advice to the resourceCreation() pointcut first attempts to obtain a
resource matching the given description from the pool. If a matching resource
cannot be obtained from the pool, the proceed() statement causes the normal
creation logic to be executed. It finally returns the resource object.
The around advice to the resourceDestruction() pointcut first attempts to put
the resource back in the pool. If the pool does not accept it for some reason (for
example, adding the resource would exceed the pool’s capacity), the proceed()
statement causes the normal destruction logic to be executed.

This template implementation for resource pooling should enable you to under-
stand the core issues associated with generic resource pooling. This will help you
understand the concrete implementations for database and thread pooling as we
focus more on the resource-specific issues in the next sections.

7.3 Example 1: database connection pooling

The need for database connection pooling is so common that JDBC 2.0 provides
a standard way to do it. With the JDBC-based solution, you simply create and dis-
pose of database connections in the normal way and the driver will, behind the
scenes, take care of connection pooling. The solution, for the most part, works
fine. However, you are dependent on the database driver for the implementation
of resource pooling. If you determine that the pooling feature of the driver you
are using is not acceptable, you have to replace the whole driver with another
one. Such a complete change may not be satisfactory; for instance, the original
driver may provide better performance than the new one. The problem lies in
the coupling between the database connectivity and the resource pooling con-
cern. With an AspectJ-based solution, we can separate these two concerns so that
they will be able to evolve independently.

 In this section, we look at a concrete example of database connection pooling.
We base our solution in JDBC1.0 (it works fine with higher versions as well).

 c

 d

 e

212 CHAPTER 7
Optimization: pooling and caching
7.3.1 Understanding the database connection pool interface

Before we get into the AOP solution for database connection pooling, let’s under-
stand the problem and its traditional solution. In this section, we briefly examine
a database connection pool interface and its usage.

 First, let’s look at the DBConnectionPool interface, in listing 7.3. Later, in list-
ing 7.6, we will look at a simple implementation of this interface.

import java.sql.*;

public interface DBConnectionPool {
 public Connection getConnection(String url, String userName,
 String password)
 throws SQLException;

 public boolean putConnection(Connection connection);

 public void registerConnection(Connection connection,
 String url, String userName, String password);
}

The method getConnection() tries to get a database connection matching the
given description from the pool. If a matching connection is available, the pool
should return it; otherwise, it should return null. The method putConnection()
returns a connection once it is no longer needed. If the pool cannot accommo-
date the connection for some reason, it should return false. Note that some
pool implementations may simply close the connection instead of returning
false, requiring no further check or action by the pool user. The method reg-
isterConnection() stores the identifying properties of the new connection so
that they can be used later in the implementation of getConnection() to
retrieve the connection. This is needed because after the creation of a connec-
tion, there is no other way for the pool to know the connection’s URL, user-
name, and password.

 In a conventional implementation of database connection pooling, you would
have to change each creation and destruction method of the connection object to
use the pooling interface in listing 7.3. The following code snippet is an example
of the changes that would be necessary in each method, which will help you to
understand the alternative solution provided by AspectJ in the next section.

Listing 7.3 DBConnectionPool.java

Example 1: database connection pooling 213
// connPool object of type DBConnectionPool is constructed elsewhere
Connection connection
 = connPool.getConnection(url, user, password);
if (connection == null) {
 connection
 = DriverManager.getConnection(url, user, password);
 connPool.registerConnection(connection, url, user, password);
}

...
// use connection object
...

if (connPool.putConnection(connection) == false) {
 connection.close();
}

This interaction follows the snippet we discussed in section 7.1.1. There is, however,
a step that we need to perform that is unique to database connection pooling.
Whenever we create a new connection, we must register it with the pool, since the
Connection class does not have an API to query for its URL, username, and pass-
word. The pool associates the information with the connection object so that it can
return a correct matching connection the next time someone requests a connection.

7.3.2 AspectJ-based database connection pooling

Let’s now design an aspect to implement modular database connection pooling. We
approach the solution by mapping each element from the pooling template in list-
ing 7.2 to an element appropriate for database connection pooling. Table 7.1 shows
the mapping of template elements to the actual entities needed for connection pooling.

In table 7.2, we map the join points used by the template solution to specific join
points in database connection pooling.

Requesting a pooled
connection

Creating a new
connection

Registering the connection

Using the connection

Returning the
connection

Table 7.1 The mapping of elements in the template to specific elements for database connection pooling

Template Element Mapped Element

Resource The java.sql.Connection class

Resource pool Any suitable resource pool implementation (in our case, an implementa-
tion of the DBConnectionPool interface)

Resource description A combination of the database URL, username, and password

214 CHAPTER 7
Optimization: pooling and caching
Now that we have a mapping from template elements to the concrete elements, we
are ready to implement a database connection pooling aspect. Listing 7.4 shows
the DBConnectionPoolingAspect that uses the mappings from tables 7.1 and 7.2.

import java.sql.*;

public aspect DBConnectionPoolingAspect {
 DBConnectionPool _connPool = new SimpleDBConnectionPool();

 pointcut connectionCreation(String url, String username,
 String password)
 : call(public static Connection
 DriverManager.getConnection(String, String, String))
 && args(url, username, password);

 pointcut connectionRelease(Connection connection)
 : call(public void Connection.close())
 && target(connection);

 Connection around(String url, String userName, String password)
 throws SQLException
 : connectionCreation(url, userName, password) {
 Connection connection
 = _connPool.getConnection(url, userName, password);
 if (connection == null) {
 connection = proceed(url, userName, password);
 _connPool.registerConnection(connection, url,
 userName, password);
 }
 return connection;
 }

 void around(Connection connection)
 : connectionRelease(connection) {

Table 7.2 The mapping of join points in the template to specific join points for database connection
pooling. These join points will be advised to introduce the connection pooling.

Template Join Point Mapped Join Point

Resource creation The call to the DriverManager.getConnection() methods. The argu-
ment’s database URL, username, and password form the resource descrip-
tion context.

Resource destruction The call to the Connection.close() method. The pointcut collects the
connection object on which the method is called as the context.

Listing 7.4 DBConnectionPoolingAspect.java

Resource
pool
creation b

Connection creation
pointcut

 c

Connection
destruction
pointcut

 d

Advice to resource
creation join points

 e

Advice to resource
destruction join points

 f

Example 1: database connection pooling 215
 if (!_connPool.putConnection(connection)) {
 proceed(connection);
 }
 }
}

Since there will be only one instance of this aspect in a virtual machine, there will be
only one instance of the resource pool created. We use a simple implementation of
the DBConnectionPool interface—SimpleDBConnectionPool—that we will examine
later in listing 7.6. If you have a different implementation of DBConnectionPool, all
you need to do is change the aspect to instantiate the new implementation.
This pointcut captures calls to the DriverManager.getConnection(String, String,
String) method. The args() pointcut designator collects all the arguments to
the method call. A more complete solution will also capture other DriverManager.
getConnection() methods that take different arguments.
This pointcut captures calls to the Connection.close() method. The target object,
the connection itself, is collected as context.
The around advice allows us to bypass the original execution path that creates a
connection. This advice first attempts to obtain a connection from the pool
object. If a matching connection can be obtained, the advice simply returns it
and bypasses the original execution path. Otherwise, it calls proceed() to take
the normal execution path that would create a new resource. Since the resource
description (URL, username, and password) is available only at the time of cre-
ation, the advice must store the information that associates the description with
the connection object in the resource pool. The aspect performs this task by call-
ing the DBConnectionPool.registerConnection() method after it has created a
new resource using proceed(). Note that registerConnection() needs to be
called only for newly created connections and not connections obtained from the
pool. The advice finally returns the connection obtained.
Just like earlier advice, the around advice allows us to bypass the original execu-
tion path that closes the connection. This advice calls putConnection() to return
the connection object to the pool. If the pool rejects the resource by returning
false, the advice simply calls proceed(), thus causing the connection to close.

NOTE One implication of our solution is that if a JDBC 2.0 driver supporting
resource pooling is used, our solution will override the default resource
pooling that it performs. However, if we introduced a scheme of peri-
odically visiting each connection in the pool and closing the idle con-
nections, then the driver-supported resource pooling would kick in as a
secondary pooling.

 b

 c

 d

 e

 f

216 CHAPTER 7
Optimization: pooling and caching
7.3.3 Implementing the connection pool
Next let’s look at the classes that implement the database connection pool. Note
that the connection pool interface and its implementation are required even in
the conventional solution. The purpose of our implementation is to see the
result of an AspectJ-based solution. Since the pool needs a way to identify a
resource request, and the Connection class does not have an API to access the
information needed to identify the connection, we will first create a class to cap-
ture this information. The DBConnectionDescription class in listing 7.5 simply
consolidates connection properties: URL, username, and password.

public class DBConnectionDescription {
 private String _url;
 private String _userName;
 private String _password;

 public DBConnectionDescription(String url, String userName,
 String password) {
 _url = url;
 _userName = userName;
 _password = password;
 }

 public int hashCode() {
 return _url.hashCode();
 }

 public boolean equals(Object obj) {
 if (this == obj) {
 return true;
 }

 if(!obj.getClass().equals(getClass())) {
 return false;
 }

 DBConnectionDescription desc = (DBConnectionDescription)obj;
 return (_url == null ?
 desc._url == null :
 _url.equals(desc._url))
 && (_userName == null ?
 desc._userName == null :
 _userName.equals(desc._userName))
 && (_password == null ?
 desc._password == null :
 _password.equals(desc._password));
 }
}

Listing 7.5 DBConnectionDescription.java

Example 1: database connection pooling 217
DBConnectionDescription contains hashCode() and equals() methods to ensure
that we can use it correctly inside a map and compare it for equivalence.

 The SimpleDBConnectionPool implementation is quite simple. A more com-
plex resource pool would consider several other factors, such as the maximum
number of resources to be pooled, the specified time that a resource should sit
idle in a pool before it is released, and perhaps even user equivalency that would
allow a resource created by one user to be used by another user with equivalent
access. Listing 7.6 shows an implementation of the DBConnectionPool interface.

import java.sql.*;
import java.util.*;

public class SimpleDBConnectionPool implements DBConnectionPool {
 List _pooledConnections = new ArrayList();

 Map _connectionDescriptionMap = new HashMap();

 synchronized
 public Connection getConnection(String url, String userName,
 String password)
 throws SQLException {
 DBConnectionDescription desc
 = new DBConnectionDescription(url, userName, password);
 List connectionsList = getConnections(desc);
 if (connectionsList == null) {
 return null;
 }

 for (int size = _pooledConnections.size(), i = 0; i < size; ++i) {
 Connection connection = (Connection)_pooledConnections.get(i);
 if (connectionsList.contains(connection)) {
 _pooledConnections.remove(connection);
 if (!connection.isClosed()) {
 return connection;
 }
 }
 }
 return null;
 }

 synchronized
 public boolean putConnection(Connection connection) {
 _pooledConnections.add(connection);
 return true;
 }

Listing 7.6 SimpleDBConnectionPool.java

Holding pooled
connections

Mapping the description
to connections

Finding
candidate
resources

Checking
against
pooled

resources

Adding to pooled
resources

218 CHAPTER 7
Optimization: pooling and caching
 synchronized
 public void registerConnection(Connection connection,
 String url, String userName,
 String password) {
 DBConnectionDescription desc
 = new DBConnectionDescription(url, userName, password);
 List connectionsList = getConnections(desc);
 if (connectionsList == null) {
 connectionsList = new ArrayList();
 _connectionDescriptionMap.put(desc, connectionsList);
 }
 connectionsList.add(connection);
 }

 private List getConnections(DBConnectionDescription desc) {
 return (List)_connectionDescriptionMap.get(desc);
 }
}

Since the implementation of the pool is not the core part of this chapter, we will
not spend too much time on the details of it. The _connectionDescriptionMap
member keeps track of the mapping between the connection object and its
description (URL, username, and password). The getConnection() method looks
for a pooled connection. The private method getConnections() returns a list of
pooled resources with the matching description. If the returned list is not empty,
getConnection() removes a connection object from the list and returns the
removed connection to the caller. The putConnection() method returns the
given resource to the available resource pool. The registerConnection() method
establishes a mapping between the given connection object and its properties.

7.3.4 Testing our solution

Finally, let’s write a test program to illustrate the AspectJ pooling solution. Our
test program first creates two connections for two sets of user/password combina-
tions. We release each connection after using it. On the next requests to those
connections, we expect to get a pooled connection instead of creating a new one.
Listing 7.7 shows the Test class that sets up this scenario.

import java.sql.*;

public class Test {
 public static void main(String[] args) throws Exception {

Adding description and
connection to the map

Listing 7.7 Test.java

Example 1: database connection pooling 219
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 printTable("jdbc:odbc:stock", "price",
 "user1", "password1");

 printTable("jdbc:odbc:stock", "price",
 "user2", "password2");

 printTable("jdbc:odbc:stock", "price",
 "user1", "password1");

 printTable("jdbc:odbc:stock", "price",
 "user2", "password2");
 }

 static void printTable(String url, String table,
 String user, String password)
 throws SQLException {
 Connection connection
 = DriverManager.getConnection(url, user, password);
 Statement stmt = connection.createStatement();
 ResultSet rs = stmt.executeQuery("select * from " + table);

 ResultSetMetaData rsmd = rs.getMetaData();
 int numCols = rsmd.getColumnCount();

 while (rs.next()) {
 for (int i = 1; i < numCols+1; ++i) {
 System.out.print(rs.getString(i) + "\t");
 }
 System.out.println();
 }
 rs.close();
 connection.close();
 }
}

The Test class examines the behavior of the connection pooling aspect when the
pool has a matching connection and when it does not. For simplicity, the only
interaction with the database is to iterate over the rows and print their content.

Adding a logging aspect
How do we know our solution works? Let’s write a simple logging aspect to under-
stand the behavior of the pooling aspect. The DBConnectionPoolLoggingAspect
aspect in listing 7.8 logs the operations of DBConnectionPool and prints the relevant
context. Notice, by the way, the easy and noninvasive logging implementation.

Interacting
with user1

Interacting
with user2

Repeating the
first interaction

Repeating the
second interaction

Creating a connection

Using the
connection

Closing the connection

220 CHAPTER 7
Optimization: pooling and caching
import java.sql.*;

public aspect DBConnectionPoolLoggingAspect {
 declare precedence: *, DBConnectionPoolLoggingAspect;

 after(String url, String userName, String password)
 returning(Connection connection)
 : call(Connection DBConnectionPool.getConnection(..))
 && args(url, userName, password) {
 System.out.println("For [" + url + "," + userName
 + "," + password + "]"
 + "\n\tGot from pool: " + connection);
 }

 after(String url, String userName, String password)
 returning(Connection connection)
 : call(Connection DriverManager.getConnection(..))
 && args(url, userName, password) {
 System.out.println("For [" + url + "," + userName
 + "," + password + "]"
 + "\n\tCreated new : " + connection);
 }

 before(Connection connection)
 : call(* DBConnectionPool.putConnection(Connection))
 && args(connection) {
 System.out.println("Putting in pool: " + connection + "\n");
 }

 before(Connection connection)
 : call(* Connection.close())
 && target(connection) {
 System.out.println("Closing: " + connection + "\n");
 }
}

The after advice to the DBConnectionPool.getConnection() method prints any
attempt to get a connection from a database pool. We collect all the arguments as
well as return the object to print the full information inside the advice body. Sim-
ilarly, the after advice to DriverManager.getConnection() logs the creation of a
new resource. The before advice to the DBConnectionPool.putConnection()
method prints any attempt to put a connection into a database pool. We collect
the connection argument to print the connection that was being returned. The
before advice to Connection.close() prints the same information when a con-
nection is closed.

Listing 7.8 DBConnectionPoolLoggingAspect.java

Precedence to
make pooling
happen before
logging

Logging resource retrieval

Logging resource creation

Logging resource relinquishing

Logging resource destruction

Example 1: database connection pooling 221
 You would not want to use this aspect in a production environment, since it
logs the usernames and passwords. In that case, if you still want to log the opera-
tions, you could just change the advice to print only the desired information.

Running the test code
Running the code is simple. You will have to create the database tables with users
and passwords as specified in the Test.java class. Detailed instructions for set-
ting up the test database are provided in the source code distribution (download-
able at http://www.manning.com/laddad). Alternatively, you can modify Test.java
itself to suit your existing test database. After the setup is complete, simply issue
the command java Test to run the program. You should see output resembling
the following:

> ajc *.java
> java Test
For [jdbc:odbc:stock,user1,password1]
 Got from pool: null
For [jdbc:odbc:stock,user1,password1]
 Created new : sun.jdbc.odbc.JdbcOdbcConnection@1cfb549
sunw 22
ibm 100
Putting in pool: sun.jdbc.odbc.JdbcOdbcConnection@1cfb549

For [jdbc:odbc:stock,user2,password2]
 Got from pool: null
For [jdbc:odbc:stock,user2,password2]
 Created new : sun.jdbc.odbc.JdbcOdbcConnection@422ede
sunw 22
ibm 100
Putting in pool: sun.jdbc.odbc.JdbcOdbcConnection@422ede

For [jdbc:odbc:stock,user1,password1]
 Got from pool: sun.jdbc.odbc.JdbcOdbcConnection@1cfb549
 sunw 22
ibm 100
Putting in pool: sun.jdbc.odbc.JdbcOdbcConnection@1cfb549

For [jdbc:odbc:stock,user2,password2]
 Got from pool: sun.jdbc.odbc.JdbcOdbcConnection@422ede
sunw 22
ibm 100
Putting in pool: sun.jdbc.odbc.JdbcOdbcConnection@422ede

Since the pool is empty, a connection could not be obtained. Therefore, a new
connection is created. When we are done with the connection, the advice puts it
into the pool.

First
interaction
with user1

 b

First
interaction
with user2

 c

Second
interaction
with user1

 d

Second
interaction
with user2

 e

 b

http://www.manning.com/laddad

222 CHAPTER 7
Optimization: pooling and caching
The pool is not empty, but the only connection in the pool matches user1 and not
user2. Therefore, the pool did not return any connection, and a new connection is
created. When we are done with the connection, it too is returned to the pool.
The pool had a matching connection for user1. The given URL and password
matched as well. Thus, the pool returned the matching connection created in the
first interaction. Note the IDs for the connection objects.
Here too, the pool had a matching connection from the second interaction.
Since the URL, username, and password matched, the pool returned the obtained
connection object.

In the previous example, we do not see output corresponding to the before
advice to the Connection.close() method in DBConnectionPoolLoggingAspect. This
is because DBConnectionPoolingAspect intercepts all the calls to Connec-
tion.close() and puts the connection into the pool instead of closing it.

 To better understand the interaction, play around with the Test class and try
different combinations.

7.3.5 Tweaking the solution

It is likely that you will have to alter the solution to fit your specific needs. Here is
some guidance to a few of the possible requirements.

 The first tweak considers the requirement of selectively enabling database
pooling, where instead of applying pooling to the whole system, we apply it
only to a select list of clients. We can do so by modifying the resource creation
and destruction pointcuts to specify selected clients, as shown in the follow-
ing snippet:

pointcut selectedClients() : within(com.manning..*);

pointcut connectionCreation(String url, String username,
 String password)
 : call(public static Connection
 DriverManager.getConnection(String, String, String))
 && args(url, username, password) && selectedClients();

pointcut connectionRelease(Connection connection)
 : call(public void Connection.close())
 && target(connection) && selectedClients();

In this code, we are defining selectedClients() to select all classes inside the
com.manning package and its subpackages only. You can modify this pointcut to
select any number of packages and classes by combining within() with && and
||. In addition, you can specify any other suitable selection criteria here. For

 c

 d

 e

Example 2: thread pooling 223
example, you may want to enable resource pooling only for resources created
within the control flow of a certain method or a set of methods.

 The second tweak considers the requirement to turn off resource pooling
completely. To achieve this, we must modify the creation and destruction point-
cuts so that they do not match any join points, thus not allowing any of the
advice to run. We use the “nullifying an advice” idiom (which we will formally
introduce in chapter 8) to ensure that no join points match the selectedClients()
pointcut, as follows:

 pointcut selectedClients() : if(false);

Note, we could still specify other selection criteria and combine it with an
if(false) pointcut. This can be especially useful when we are debugging and
trying out what-if scenarios:

 pointcut selectedClients() : within(com.manning..*) && if(false);

We can also use a variation of this to turn off other selection criteria, thus uncon-
ditionally selecting all the clients by using if(true) and || as follows:

 pointcut selectedClients() : within(com.manning..*) || if(true);

Now you can try out various combinations for enabling resource pooling to see
the optimal combination for your system. The use of the “nullifying an advice”
idiom also provides you with an opportunity to see the impact of resource pool-
ing on your overall system performance.

7.4 Example 2: thread pooling

Thread pooling is often used for high-performance server-side applications. The
thread resource is unusual in that the resource destruction point is not as obvious
as that in the call to a method such as close(). Further, since the resource
thread, by definition, is an active resource—it owns an execution flow of its
own—putting it in a resource pool is a bit interesting.

 Many application server providers internally recycle the threads to improve
performance. However, other applications still require that each module that
creates a new thread be modified to use the pool’s API. In this section, we imple-
ment a simple AspectJ-based solution that cures the problem of invasiveness
associated with the conventional solution.

224 CHAPTER 7
Optimization: pooling and caching
7.4.1 The echo server

First we will create a simple TCP/IP-based server—one that echoes back the
request string and uses a new thread for serving each request. We will use this
example to introduce thread pooling. Later we will write an aspect that recycles
those threads using a thread pool.

 EchoServer is a multithreaded application. It creates a server socket, waits on
the socket for an incoming request, accepts a connection from a client, and
spawns a new thread to interact with the client. Each spawned thread echoes
back each line supplied by the client until the client chooses to terminate the
interaction, at which time the spawned thread terminates as well. Listing 7.9
shows the EchoServer class.

import java.io.*;
import java.net.*;

public class EchoServer {
 public static void main(String[] args) throws Exception {
 if (args.length != 1) {
 System.out.println("Usage: java EchoServer <portNum>");
 System.exit(1);
 }

 int portNum = Integer.parseInt(args[0]);
 ServerSocket serverSocket = new ServerSocket(portNum);

 while(true) {
 Socket requestSocket = serverSocket.accept();
 Runnable worker = new EchoWorker(requestSocket);
 Thread serverThread = new Thread(worker);
 serverThread.start();
 }
 }
}

It is a common practice to utilize a separate class—often called the worker
class—that encodes the thread’s logic. You then supply an object of that class
to a thread that calls the worker’s run() method. The EchoServer class
spawns a new thread with an object EchoWorker (shown in listing 7.10) as its
worker object.

Listing 7.9 EchoServer.java

Example 2: thread pooling 225
import java.io.*;
import java.net.*;

class EchoWorker implements Runnable {
 private Socket _requestSocket;

 public EchoWorker(Socket requestSocket) throws IOException {
 _requestSocket = requestSocket;
 }

 public void run() {
 BufferedReader requestReader = null;
 PrintWriter responseWriter = null;
 try {
 requestReader
 = new BufferedReader(new InputStreamReader(
 _requestSocket.getInputStream()));
 responseWriter
 = new PrintWriter(_requestSocket.getOutputStream());

 while(true) {
 String requestString = requestReader.readLine();
 if (requestString == null) {
 break;
 }
 System.out.println("Got request: " + requestString);
 responseWriter.write(requestString + "\n");
 responseWriter.flush();
 }
 } catch (IOException ex) {
 } finally {
 try {
 if(requestReader != null) {
 requestReader.close();
 }
 if(responseWriter != null) {
 responseWriter.close();
 }
 _requestSocket.close();
 } catch (IOException ex2) { }
 }
 System.out.println("Ending the session");
 }
}

Listing 7.10 EchoWorker.java: the worker class

Initializes with the
socket to be served

Initializes
request and

response
streams

Serves the
client

Cleans up
all the
resources
used

226 CHAPTER 7
Optimization: pooling and caching
EchoWorker performs its task in the run() method. It obtains the input and out-
put streams from the socket supplied in the constructor; it then reads a line from
the input and echoes it back by writing to the output.

7.4.2 Understanding the thread pool interface

Now that we have created the classes that demonstrate the thread usage, let’s
examine the thread pool interface. Later in this chapter, we will write an aspect
that uses this interface to introduce thread pooling to the system. Listing 7.11
shows the ThreadPool interface that allows basic pooling operations.

public interface ThreadPool {
 public boolean putThread(Thread thread);

 public Thread getThread();

 public boolean wakeupThread(Thread thread);
}

The putThread() method puts the thread into the pool, gives the ownership of
the thread to the pool, and puts the thread into the waiting state.
The getThread() method, in contrast, gets an available thread, thus transferring
ownership to the caller. The returned thread will be in a waiting state and the cli-
ent should initialize its state, if necessary, before calling wakeupThread().
The wakeupThread() method activates a thread obtained from the pool. If the
thread could not be woken up, presumably because it was not waiting, then the
method returns false.

7.4.3 AspectJ-based thread pooling

Before we build the pooling aspect, we need to create a class that allows us to use
the same pooled thread to perform different work. We need this class because
the Thread class can only set its worker object during the thread’s construction,
and we must have a way to change a pooled thread’s worker object each time we
obtain it from the pool. DelegatingThread is simply a thread that delegates its
run() method to its delegatee object. By setting a different delegatee object, we
can make a thread perform different tasks. Listing 7.12 shows the implementa-
tion for the DelegatingThread class.

Listing 7.11 The thread pool interface

Putting the thread
into the pool

 b

Obtaining the
thread

 c

Waking up the
obtained thread

 d

 b

 c

 d

Example 2: thread pooling 227
public class DelegatingThread extends Thread {
 private Runnable _delegatee;

 public void setDelegatee(Runnable delegatee) {
 _delegatee = delegatee;
 }

 public void run() {
 _delegatee.run();
 }
}

Now that we have our basic classes and interfaces, let’s build our thread pooling
aspect. As with the database connection pooling example in section 7.3, we will
first map each element from the resource pooling template (listing 7.2) to spe-
cific elements needed for thread pooling. Table 7.3 shows the mapping of tem-
plate elements to the actual entities needed for thread pooling.

In table 7.4, we map the join points used by the template solution to specific join
points in thread pooling.

Let’s use this mapping to write ThreadPoolingAspect (listing 7.13), which will
introduce thread pooling to a system.

Listing 7.12 DelegatingThread.java

Table 7.3 The mapping of elements in the template to specific elements for thread pooling

Template Element Mapped Element

Resource The java.lang.Thread class.

Resource pool Any suitable resource pool implementation (in our case, an implemen-
tation of the ThreadPool interface).

Resource description None considered here; all threads are treated alike.

Table 7.4 The mapping of join points in the template to specific join points for thread pooling.
These join points will be advised to introduce the thread pooling.

Template Join Point Mapped Join Point

Resource creation The call to Thread’s constructor and the Thread.start() method.

Resource destruction The completion of the Thread.run() or Runnable.run()
method. The target socket object forms the context collected.

228 CHAPTER 7
Optimization: pooling and caching
public aspect ThreadPoolingAspect {
 ThreadPool _pool = new SimpleThreadPool();

 pointcut threadCreation(Runnable worker)
 : call(Thread.new(Runnable)) && args(worker);

 pointcut session(DelegatingThread thread)
 : execution(void DelegatingThread.run()) && this(thread);

 pointcut threadStart(DelegatingThread thread)
 : call(void Thread.start()) && target(thread);

 Thread around(Runnable worker) : threadCreation(worker) {
 DelegatingThread availableThread
 = (DelegatingThread)_pool.getThread();
 if (availableThread == null) {
 availableThread = new DelegatingThread();
 }
 availableThread.setDelegatee(worker);
 return availableThread;
 }

 void around(DelegatingThread thread) : session(thread) {
 while (true) {
 proceed(thread);
 _pool.putThread(thread);
 }
 }

 void around(Thread thread) : threadStart(thread) {
 if (!_pool.wakeupThread(thread)) {
 proceed(thread);
 }
 }
}

This code initializes the thread pool object. Here we use a simple implementation of
the ThreadPool interface—SimpleThreadPool—that we will examine in listing 7.14.
The aspect needs to capture three join points: thread creation, thread service
session, and thread start. The pointcut threadCreation() captures the calls to the
Thread’s constructor that takes a Runnable argument. It collects the argument as
context. Similarly, the session() pointcut captures the executions of the run()
method in the DelegatingThread class. The pointcut threadStart() captures calls
to the Thread.start() method, and collects the thread object that is to be started
as the context.

Listing 7.13 ThreadPoolingAspect.java

Creating the
thread pool

 b

Defining the
pointcuts

 c

Advising
thread
creations

 d

 e Changing the
delegatee

 f

Advising
the thread
session

 g

Advising
the thread
start

 b

 c

Example 2: thread pooling 229
When a client needs to start a task in a different thread, the around advice to the
threadCreation() pointcut first attempts to get a thread from the pool. If it can-
not get a pooled thread, it creates a new DelegatingThread object. In either case,
it sets the thread’s target Runnable with the Runnable object that was the construc-
tor argument collected as context by the threadCreation() pointcut. It returns to
the caller the thread initialized with the given Runnable object. Note that the
caller will always get an object of type DelegatingThread. This is fine since the cli-
ent was expecting a Thread object to be constructed by a constructor and Delega-
tingThread is a Thread. The client would typically call the start() method on the
obtained thread to start the thread.
The _delegatee object of a thread obtained from the pool is changed to the
worker context collected by the threadCreation() pointcut. This enables the
pool to perform the new work requested by the clients.
The around advice to the session() pointcut puts the captured method, Delega-
tingThread.run(), in an infinite loop with the while(true) statement, which
ensures that the caller thread never dies. (This is because a thread, once dead,
cannot be resurrected, and we need to keep all pooled threads alive to hand over
to the requesting clients.) The proceed() statement causes the captured method
to execute, which, in turn, executes the run() method of the collected thread’s
delegatee. After each execution, the thread is put into the thread pool object by
the ThreadPool.putThread() method, which will cause that thread to go into a
waiting state until it is woken up again by another thread. Note that even though
we have an infinite while loop inside the advice, the captured thread’s run()
method will execute only once before ThreadPool.putThread() is called to put
the thread into the pool until it is needed by another thread. Once the thread is
woken up, it will execute the captured thread’s run() method one more time,
and the cycle continues.
The around advice to the threadStart() pointcut attempts to wake up the thread.
If this thread was obtained from the pool, it will be woken up. If this was a newly
created thread, wakeupThread() will return false. In that case, proceed() will call
the original start() method to start the new thread. In either case, the thread
will execute the delegated run() method once before the thread is put into the
waiting state by the advice to the session() pointcut.

NOTE One implication of our solution is that it will pool all threads created in
the system—not just for the server. This may or may not be desirable.
We discuss ways to handle this situation later in this section.

 d

 e

 f

 g

230 CHAPTER 7
Optimization: pooling and caching
7.4.4 Implementing the thread pool

Next let’s look at the class that implements the thread pool interface. Listing 7.14
shows the SimpleThreadPool interface that we used in our thread pooling aspect.

import java.util.*;

public class SimpleThreadPool implements ThreadPool {
 List _waitingThreads = new ArrayList();

 public boolean putThread(Thread thread) {
 assert Thread.currentThread() == thread;
 synchronized(thread) {
 synchronized (this) {
 _waitingThreads.add(thread);
 }

 try {
 thread.wait();
 } catch(InterruptedException ex) {
 }
 }
 return true;
 }

 synchronized public Thread getThread() {
 if (!_waitingThreads.isEmpty()) {
 Thread availableThread
 = (Thread)_waitingThreads.remove(0);
 return availableThread;
 }
 return null;
 }

 public boolean wakeupThread(Thread thread) {
 if (thread.isAlive()) {
 synchronized(thread) {
 thread.notify();
 return true;
 }
 }
 return false;
 }
}

Listing 7.14 SimpleThreadPool.java

 b Putting
the thread
into the
pool

 c Obtaining
the thread

 d Waking up
the obtained
thread

Example 2: thread pooling 231
The putThread() method requires that the caller thread be the same thread it is
attempting to pool. This requirement is enforced using an assert statement1 (pro-
vided you have enabled the assertions, of course). It adds the thread to the list of
waiting threads, where it will wait until notified by the wakeupThread() method,
which is typically called after someone obtains it from the pool using getThread().
The getThread() method provides a thread to the caller by returning an avail-
able thread from the pool. The thread still continues to be in a waiting state until
it is woken up. The client will change the thread’s state to that needed by the task
it is about to perform—much like initializing a newly created thread before wak-
ing it up.
The wakeupThread() method wakes up the thread. Once woken up, the thread
starts performing its given task.

7.4.5 Testing our solution

Now that we have the implementation, it is time to test our thread pooling using
the AspectJ-based solution. Let’s first write a test client to exercise the pooling
functionality, as shown in listing 7.15.

import java.io.*;
import java.net.*;

public class EchoClient {
 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 System.out.println(
 "Usage: java EchoClient <server> <portNum>");
 System.exit(1);
 }
 String serverName = args[0];
 int portNum = Integer.parseInt(args[1]);
 setup(serverName, portNum);
 }

 private static void setup(String serverName, int portNum)
 throws IOException {
 Socket requestSocket
 = new Socket(InetAddress.getByName(serverName),
 portNum);

1 The new functionality of assert allows you to programmatically express contracts. At runtime, you can se-
lectively enable or disable assertion for a class, package, and package trees. See http://java.sun.com/j2se/1.4/
docs/guide/lang/assert.html for more details.

 b

 c

 d

Listing 7.15 EchoClient.java

http://java.sun.com/j2se/1.4/

232 CHAPTER 7
Optimization: pooling and caching
 BufferedReader consoleReader
 = new BufferedReader(new InputStreamReader(System.in));

 BufferedReader responseReader = new BufferedReader(
 new InputStreamReader(requestSocket.getInputStream()));
 PrintWriter requestWriter
 = new PrintWriter(requestSocket.getOutputStream());

 while(true) {
 String requestString = consoleReader.readLine();
 if (requestString.equals("quit")) {
 break;
 }
 requestWriter.println(requestString);
 requestWriter.flush();
 System.out.println("Response: "
 + responseReader.readLine());
 }
 requestWriter.close();
 responseReader.close();
 requestSocket.close();
 }
}

The class EchoClient accepts two arguments to the program: the server name
and the server port number. After parsing the arguments, it invokes the setup()
method that performs the real work. The setup() method connects to the server
by creating a client socket. The method then simply reads the user input from
the console, writes it to an output stream of the client socket, reads from the
input stream of the client socket, and writes the text.

Adding a logging aspect
To observe the behavior of the EchoClient test program, let’s write a simple log-
ging aspect, shown in listing 7.16, just as we did for the database connection-
pooling example.

public aspect ThreadPoolLoggingAspect {
 after() returning(Thread thread)
 : execution(Thread ThreadPool.getThread(..)) {
 System.out.println("Got from pool: " + thread);
 }

 before(Thread thread)
 : execution(boolean ThreadPool.putThread(Thread))

Listing 7.16 Logging the pool operations: ThreadPoolLoggingAspect

Example 2: thread pooling 233
 && args(thread) {
 System.out.println("Putting in pool: " + thread + "\n");
 }

 before(Thread thread)
 : execution(boolean ThreadPool.wakeupThread(Thread))
 && args(thread) {
 System.out.println("Waking up: " + thread);
 }
}

The after advice to the ThreadPool.getThread() method prints the return
object—the thread obtained from the pool. Similarly, the before advice to
ThreadPool.putThread() and ThreadPool.wakeupThread() prints the thread that
is returned to the pool and the thread being woken up.

Running the test code
To run the test program, follow these steps:

1 Compile the code. Since we are using the assertion facility, you need to
pass the -source 1.4 flag to the compiler invocation:

> ajc –source 1.4 *.java

2 In a command shell, start the server by issuing the following command.
You should start the server on port 10000. If that port is unavailable, try
another port. The –ea option to JVM ensures that assertions are enabled:

> java -ea EchoServer 10000

3 In another command shell, start a client by issuing the following com-
mand. The client host should be the same as the server host:

> java –ea EchoClient localhost 10000

4 Type a few strings for the server to echo in the client shell. Quit the shell
by typing quit.

First string
Second String
quit

5 Start another client by following step 2. Enter a few strings and quit.
6 Observe the output in the server window. You should see something like this:

Got from pool: null
Waking up: Thread[Thread-1,5,main] b

234 CHAPTER 7
Optimization: pooling and caching
Got request: First string
Got request: Second string
Ending the session
Putting in pool: Thread[Thread-1,5,main]

Got from pool: Thread[Thread-1,5,main]
Waking up: Thread[Thread-1,5,main]
Got request: Third string
Got request: Fourth string
Ending the session
Putting in pool: Thread[Thread-1,5,main]

The server could not obtain a thread from the thread pool; therefore, a new
thread [Thread-1,5,main] was created. Upon ending the first session, [Thread-
1,5,main] is returned to the thread pool.
This time, the server could obtain a thread from the pool—[Thread-1,5,main],
which was placed there by an earlier client. No new thread was created! Once this
session is over, the thread is returned to the pool.

Try variations, such as simultaneously starting more than one client and quitting
them in and out of order.

7.4.6 Tweaking the solution

The solution we’ve presented here applies resource pooling to all threads in the
system using the Thread(Runnable) constructor. In most cases, since the AspectJ-
based solution offers pooling for free, this can be considered an added bonus. In
other cases, however, you may want a more controlled usage of pooling. This sec-
tion looks at some of those.

 One of the most common requirements of thread pooling is to apply it selec-
tively based on the client. The solution in section 7.3.5, which uses the selected-
Clients() pointcut for database connection pooling, applies equally well here.
Just as in the database connection example, you can specify any criteria you need
in a new pointcut and combine it using && with the threadCreation(), session(),
and threadStart() pointcuts to restrict the aspect’s scope.

 It is sometimes desirable to restrict pooling to certain kinds of jobs. In our
example, for instance, we may want to restrict it to threads used for the echo ser-
vice. It is easy to modify the aspect to do this. Simply modify the threadCre-
ation() pointcut as follows. In this case, we are restricting the thread pooling to
threads delegating their work to a Runnable type of EchoWorker:

 pointcut threadCreation(Runnable worker)
 : call(Thread.new(Runnable)) && args(worker)
 && args(EchoWorker);

 b The interaction
with the first
client

 c The interaction
with the second
client

 b

 c

Extending pooling concepts to caching 235
When you become more familiar with AspectJ, you can add many other tweaks to
optimally configure the AspectJ-based pooling solution to fit your system’s needs.

7.5 Extending pooling concepts to caching

Caching is often confused with pooling, partially because of the apparent simi-
larity between their implementations. However, the difference between the two is
simple: with pooling, there is only one exclusive owner of the pooled object at
any given time, whereas with caching, multiple users could use a cached object.
The exclusive ownership in pooling also necessitates the explicit transfer of the
ownership between the users and the pool. By addressing these differences, we
can extend the AspectJ implementation of pooling for caching purposes. In this
section, we examine XSLT stylesheet caching as an example.

 First let’s create a simple Test program, as shown in listing 7.17, that illus-
trates a scenario where the use of caching can boost system performance by reus-
ing the stylesheet transformer. This program will also be used to show the effect
of the caching aspect that we will develop later.

import java.io.*;

import javax.xml.transform.*;
import javax.xml.transform.stream.*;

public class Test {
 public static void main(String[] args) throws Exception {
 printTableRaw("input1.xml");
 printTablePretty("input1.xml");
 printTableRaw("input2.xml");
 printTablePretty("input2.xml");
 }

 private static void printTableRaw(String xmlFile)
 throws TransformerConfigurationException, TransformerException {
 TransformerFactory tFactory = TransformerFactory.newInstance();
 Transformer transformer
 = tFactory.newTransformer(
 new StreamSource(new File("tableRaw.xsl")));

 // Use the transformer
 }

 private static void printTablePretty(String xmlFile)
 throws TransformerConfigurationException, TransformerException {

Listing 7.17 Test.java: reusing the stylesheet transformer

236 CHAPTER 7
Optimization: pooling and caching
 TransformerFactory tFactory = TransformerFactory.newInstance();
 Transformer transformer
 = tFactory.newTransformer(
 new StreamSource(new File("tablePretty.xsl")));
 // Use the transformer
 }
}

In listing 7.17, the printTableRaw() and printTablePretty() methods take an
argument for the XML file to be transformed. Each method creates an XSLT
transformer object that can be used later to transform the input XML file for,
say, the purpose of printing or creating HTML documents. Note that both
methods create a fresh Transformer object each time they are invoked—that is
the caching opportunity we will explore later. The code for printTableRaw()
and printTablePretty() is very similar, and in a real application they would be
refactored to share the common code. However, we leave them as is to mimic
the situation in which the only logic shared between such methods is the cre-
ation of the transformer.

 Also consider a simple logging aspect that monitors the creation of new
Transformer objects. The aspect in listing 7.18 prints the transformer
obtained by invoking the TransformerFactory.newTransformer() method in the
Test class.

import javax.xml.transform.*;

public aspect LogTransformerCreation {
 declare precedence: LogTransformerCreation, *;

 after(Source source) returning (Transformer transformer)
 : call(* TransformerFactory.newTransformer(..))
 && args(source) {
 System.out.println("Obtained transformer for:\n\t"
 + source.getSystemId() + "\n\t"
 + transformer);
 }
}

We assume the existence of input1.xml, input2.xml, tableRaw.xsl, and
tablePretty.xsl. You can use any valid XML and XSLT files in place of these. You
can also find example files in the downloadable source code. When we compile

Listing 7.18 LogTransformerCreation.java: monitors the creation of Transformer objects

Extending pooling concepts to caching 237
these files and run the program, we see that a new Transformer is instantiated
every time:

> ajc Test.java LogTransformerCreation.java
> java Test
Obtained transformer for:
 file:///F:/stylesheets/tableRaw.xsl
 org.apache.xalan.transformer.TransformerImpl@fc9944
Obtained transformer for:
 file:///F:/stylesheets/tablePretty.xsl
 org.apache.xalan.transformer.TransformerImpl@a8c488
Obtained transformer for:
 file:///F:/stylesheets/tableRaw.xsl
 org.apache.xalan.transformer.TransformerImpl@76cbf7
Obtained transformer for:
 file:///F:/stylesheets/tablePretty.xsl
 org.apache.xalan.transformer.TransformerImpl@cec0c5

This output shows that each invocation of a method resulted in creating a brand-new
Transformer object even for the same-source stylesheet file. In the next section,
you will see how you can use a caching aspect to avoid creating a new Trans-
former object if the stylesheet is the same.

7.5.1 AspectJ-based caching: the first version

Now let’s introduce caching using AspectJ. We would like to cache the Trans-
former instances for each source stylesheet file, and create the Transformer for
tableRaw.xsl and tablePretty.xsl only once. The subsequent transformations
should just reuse those instances. Extending the pooling concept, we need to
surround the Transformer creation with an around advice. The advice should
first check whether the cache already has a matching Transformer; if it exists, the
advice should return it. Otherwise, the around advice should proceed with creat-
ing a new instance and add it to the cache before returning. We encode this logic
into an aspect, as shown in listing 7.19.

import java.util.*;

import javax.xml.transform.*;

public aspect TransformerCacheAspect {
 Map _cache = new Hashtable();

 pointcut transformerCreation(Source source)
 : call(* TransformerFactory.newTransformer(..))
 && args(source);

Listing 7.19 TransformerCacheAspect.java: the caching aspect for Transformer instances

The cache map b The
transformer
creation
pointcut c

file:///F:/stylesheets/tableRaw.xsl
file:///F:/stylesheets/tablePretty.xsl
file:///F:/stylesheets/tableRaw.xsl
file:///F:/stylesheets/tablePretty.xsl

238 CHAPTER 7
Optimization: pooling and caching
 Transformer around(Source source)
 throws TransformerConfigurationException
 : transformerCreation(source) {
 Transformer transformer
 = (Transformer)_cache.get(source.getSystemId());
 if (transformer == null) {
 transformer = proceed(source);
 _cache.put(source.getSystemId(), transformer);
 }
 return transformer;
 }
}

We keep the cache in a map with the stylesheet’s system identifier as the key and
the Transformer instance as the value.
The transformerCreation() pointcut captures the call join points to Transformer-
Factory.newTransformer(), which creates a new Transformer instance. We also
capture the argument to the method calls in order to use it for cache identification.
The around advice first queries the cache for a matching Transformer. If no
match is found, it uses proceed() to carry out the original operation, which is the
creation of a new Transformer that it then puts in the cache. Finally, it returns
either the Transformer object obtained from the cache or the newly created one.

When we compile the source along with the aspect and run the program, we see
the following output:

> ajc Test.java LogTransformerCreation.java TransformerCacheAspect.java
> java Test
Obtained transformer for:
 file:///F:/stylesheets/tableRaw.xsl
 org.apache.xalan.transformer.TransformerImpl@1b26af3
Obtained transformer for:
 file:///F:/stylesheets/tablePretty.xsl
 org.apache.xalan.transformer.TransformerImpl@1feca64
Obtained transformer for:
 file:///F:/stylesheets/tableRaw.xsl
 org.apache.xalan.transformer.TransformerImpl@1b26af3
Obtained transformer for:
 file:///F:/stylesheets/tablePretty.xsl
 org.apache.xalan.transformer.TransformerImpl@1feca64

Observe that the last two requests resulted in obtaining the same Transformer
objects they obtained before. We now have implemented the caching of the
Transformer objects simply by adding an aspect and without touching any of the
original modules.

The
caching
advice

 d

 b

 c

 d

file:///F:/stylesheets/tableRaw.xsl
file:///F:/stylesheets/tablePretty.xsl
file:///F:/stylesheets/tableRaw.xsl
file:///F:/stylesheets/tablePretty.xsl

Extending pooling concepts to caching 239
7.5.2 AspectJ-based caching: the second version

The previous solution has one problem when used in programs that obtain Trans-
former objects in multiple threads. This is due to the limitation of the Transformer
object that allows only one thread to use it at a time. This may not be a problem if
your program only needs to access the Transformer objects from one thread at a
time. To address the other cases, we need to modify our solution. There are a few
ways to fix the problem. One is to cache templates instead of the Transformer,
since the Templates class allows multiple threads to create Transformers based on
it. This implementation change is also simple, requiring only that we modify the
around advice in TransformerCacheAspect in the following way:

Transformer around(Source source, TransformerFactory tFactory)
 throws TransformerConfigurationException
 : transformerCreation(source) && target(tFactory) {
 Templates templates = (Templates)_cache.get(source.getSystemId());
 if (templates == null) {
 templates = tFactory.newTemplates(source);
 _cache.put(source.getSystemId(), templates);
 }
 return templates.newTransformer();
}

With this around advice, although we will be creating a new Transformer for each
request, creating them from a template is a lot cheaper than creating them from
a source stylesheet, since the direct creation of the Transformer object requires
loading and parsing the stylesheet file. To observe the effect of our changes, let’s
modify the logging aspect from listing 7.18 by adding an advice to it, as shown
in listing 7.20.

import javax.xml.transform.*;

public aspect LogTransformerCreation {
 declare precedence: LogTransformerCreation, *;

 after(Source source) returning (Transformer transformer)
 : call(* TransformerFactory.newTransformer(..))
 && args(source) {
 System.out.println("Obtained transformer for:\n\t"
 + source.getSystemId() + "\n\t"
 + transformer);
 }

 after(Source source) returning (Templates templates)
 : call(* TransformerFactory.newTemplates(..))

Listing 7.20 LogTransformerCreation.java: modified to monitor Template creation

240 CHAPTER 7
Optimization: pooling and caching
 && args(source) {
 System.out.println("Obtained template for:\n\t"
 + source.getSystemId() + "\n\t"
 + templates);
 }
}

Now when we compile and run the program, we see the following output:

> ajc Test.java LogTransformerCreation.java TransformerCacheAspect.java
> java Test
Obtained template for:
 file:///F:/stylesheets/tableRaw.xsl
 org.apache.xalan.templates.StylesheetRoot@1b16e52
Obtained transformer for:
 file:///F:/stylesheets/tableRaw.xsl
 org.apache.xalan.transformer.TransformerImpl@8b819f
Obtained template for:
 file:///F:/stylesheets/tablePretty.xsl
 org.apache.xalan.templates.StylesheetRoot@998b08
Obtained transformer for:
 file:///F:/stylesheets/tablePretty.xsl
 org.apache.xalan.transformer.TransformerImpl@76cbf7
Obtained transformer for:
 file:///F:/stylesheets/tableRaw.xsl
 org.apache.xalan.transformer.TransformerImpl@3bb2b8
Obtained transformer for:
 file:///F:/stylesheets/tablePretty.xsl
 org.apache.xalan.transformer.TransformerImpl@152544e

While the test program made four creation requests, it resulted in the creation of
only two template objects: one for each stylesheet.

 From these two versions of the caching program, you can see that the modular-
ity of the AspectJ-based caching solution not only helps implement the solution in
a noninvasive manner, but also localizes the changes during the evolution.

7.5.3 Ideas for further improvements

We conclude our discussion of AspectJ-based caching with some ideas for
improving the solution further. Each of these improvements requires changes
only to the aspect:

■ We have not considered the validness of the cached object. If the stylesheet
file has been modified since the last time the template was added to the
cache, you need to invalidate the cache and re-create the Template object.
You can achieve this objective by keeping additional data in the cache

file:///F:/stylesheets/tableRaw.xsl
file:///F:/stylesheets/tableRaw.xsl
file:///F:/stylesheets/tablePretty.xsl
file:///F:/stylesheets/tablePretty.xsl
file:///F:/stylesheets/tableRaw.xsl
file:///F:/stylesheets/tablePretty.xsl

Summary 241
corresponding to the modification time of the file. During cache retrieval,
if the cache timestamp doesn’t match the last modified time of the
stylesheet file, you must proceed with the logic of creating a new Trans-
former and updating the cache.

■ In our examples, we never removed any Transformers from the cache, thus
letting it grow unbounded. This may eventually lead to the VM running out
of memory. You can fix this problem by adding a SoftReference-wrapped
Transformer object. Before running out of memory, the VM will garbage-
collect these SoftReferences instead of issuing the devastating OutOfMemory-
Error. Instead of waiting for the low memory condition to trigger the cache
cleanup, you could also actively monitor the cache to remove, say, the least
recently used Transformer.2 You could, of course, still use the SoftRefer-
ences to augment the monitoring logic, especially since monitoring parame-
ters such as frequency of cleanup and the cache size are hard to determine
and if chosen incorrectly will lead to out-of-memory errors.

7.6 Summary

Performance optimization is often a secondary consideration, not because it is
unimportant, but because placing a primary consideration on it causes the
design and implementation to carry baggage with a questionable value. How-
ever, adding performance improvements such as pooling and caching as an
afterthought requires potentially massive changes to design and implementa-
tion. There is usually no satisfactory resolution to this dilemma—using conven-
tional solutions, that is. An AOP-based solution resolves a good part of this
dilemma by offering a way to introduce performance optimization when you
need it without requiring any system-wide changes.

 After reading this chapter, you know how AspectJ provides an easy, plug-and-
play pooling and caching solution. By simply introducing a few prewritten
aspects to the system, you ensure that your applications benefit from perfor-
mance improvement, while the main logic of the application is completely obliv-
ious to the fact that pooling or caching is taking place. Modifications to the
pooling and caching policy are easy to implement and require only localized
changes. Unlike conventional solutions, minimum change is required if you

2 You can easily implement such functionality using LinkedHashMap instead of Hashtable in listing 7.19.
For details, see http://developer.java.sun.com/developer/JDCTechTips/2002/tt0709.html and http://
javaalmanac.com/egs/java.util/coll_Cache.html.

http://developer.java.sun.com/developer/JDCTechTips/2002/tt0709.html
http://

242 CHAPTER 7
Optimization: pooling and caching
replace the underlying API for the pool or cache with a new one. The impact of the
differences in APIs is limited to the aspects. In other words, the aspect absorbs the
API differences. The aspect-oriented solution takes pooling and caching to a com-
pletely new level.

 In your progression to adopt AspectJ, pooling and caching are similar to the
logging and policy enforcement implementations in that they do not require you
to commit to the use of AspectJ in your deployed system. You can remove pool-
ing and caching aspects from the final system and lose only the performance
gains, without any changes to core system functionality. With such an approach,
you can initially use AspectJ to determine the modules needing pooling and
caching, and then, if you do not want AspectJ in the final system, simply remove
the aspects from the system. You can then implement pooling by modifying the
modules that need pooling in a conventional manner.

Part 3

Advanced applications
of AspectJ

Now that we have looked into simple applications of AspectJ, it is time to
understand how AspectJ is useful in modularizing complex crosscutting con-
cerns. In part 3, we utilize the advanced constructs.

 Unlike the aspects in the second part of this book, you must continue to
use these aspects in the deployed system to gain any benefit. We often refer to
the aspects in part 3 as deployment or production aspects.

 Chapter 8 introduces a few AspectJ design patterns and idioms that we will
use in the remaining chapters. In chapters 9, 10, 11, and 12, we deal with
crosscutting concerns such as thread safety, authentication and authorization,
transaction management, and business rules. Using and extending the examples
we provide, you will be well on your way to creating an EJB-lite, make-your-own
server. Chapter 13 concludes this book with a discussion on incorporating
AspectJ into your organization.

8Design patterns
and idioms
Along with the various idioms, this
chapter covers
■ Worker object creation pattern
■ Wormhole pattern
■ Exception introduction pattern
■ Participant pattern
245

246 CHAPTER 8
Design patterns and idioms
Design patterns and idioms define solutions to recurring design issues, and we use
them to avoid reinventing the wheel for often-encountered problems. Familiarity
with these patterns and idioms often leads to a quick and proven solution; no won-
der several books and articles are devoted to design patterns in every major tech-
nology. Consider, for instance, a situation where you are faced with the task of
providing a mechanism for creating a coherent set of related objects without speci-
fying the concrete classes. Instead of attempting ad hoc approaches, you can use
the factory pattern to reach a solution. In a similar way, when you need to define a
large set of related constants, using the idiom of putting them in an interface leads
you to a quick answer and lets you understand all the implications.

 The difference between design patterns and idioms involves the scope at
which they solve problems and their language specificity. From the scope point
of view, idioms are just smaller patterns. From the language point of view, idioms
apply to a specific language whereas the design patterns apply to multiple lan-
guages using the same methodology. Only a few languages currently support
AOP. Therefore, at this point, the differences between patterns and idioms from
the AOP perspective are mostly based on their scope and complexity. Some years
from now, when we may have a significant number of languages supporting the
AOP paradigm, we will be able to make a better differentiation. The patterns we
examine in this chapter are so powerful that any emerging languages will likely
support them, thus making them language-independent.

 The object-oriented programming community names these design patterns
and idioms to simplify the communication of design concepts. Naming the pat-
tern (factory, visitor, and decorator are examples) conveys the intent and decisions
succinctly and accurately without providing all the details. For instance, as soon
as I tell you “The javax.jms.Session interface is a factory for message producers
and consumers,” you immediately know what kind of methods to expect in the
interface. You also know that most likely the direct creation of message producers
and consumers (without using the factory) won’t be allowed.

 Whether we call a recurring usage arrangement a design pattern or an idiom,
it serves the same purpose of providing a template we can use to solve certain
design problems. Our goal in this chapter is to present patterns and idioms that
will guide you when you start applying AspectJ to your own problems. We also
hope that they will help you start thinking about problems in more abstract
terms. Although this book covers problems from many domains, you will no
doubt encounter new problems as you begin using AspectJ in your projects.
When that happens, you will find that a combination of these design patterns
and idioms will lead you to a solution more quickly.

The worker object creation pattern 247
 In this chapter, we examine four design patterns and four idioms. Once you
understand them well, they will come handy for a variety of problems. You must
understand these patterns and idioms before you continue to part 3 of this book.

NOTE You can also apply AspectJ to implement existing object-oriented de-
sign patterns such as factory and visitor. Such usage results in a clean
and reusable implementation of those patterns. For more details on this
usage of AspectJ, please refer to http://www.cs.ubc.ca/~jan/AODPs and
the “Resources” section at the back of this book.

8.1 The worker object creation pattern

Suppose you need to route each direct call to a specific set of methods through a
worker object in a crosscutting manner. A worker object is an instance of a class
that encapsulates a method (called a worker method) so that the method can be
treated like an object. The worker object can then be passed around, stored, and
invoked. In Java, the common way to realize a worker class is to create a class that
implements Runnable, with the run() method calling the worker method. When
you execute such an object, it in turn executes the worker method. The worker
object creation pattern offers a way to capture operations with a pointcut and auto-
matically generate worker objects that encapsulate those operations. You can
then pass these objects to the appropriate methods to be executed. When you
use this pattern, you ensure a consistent behavior in your system—and you also
save a ton of code.

 I first discovered this pattern while adding thread safety to a Swing-based
project, where a network reader thread was performing some UI updates. To com-
ply with Swing’s single-thread rule,1 the network reader thread could not directly
call the UI update methods. Quite early on, I decided to use an aspect that would
advise the join points performing the UI updates to route the calls through Event-
Queue.invokeLater(). However, in the first solution, I used one hand-coded
worker class to individually route each update method. These classes were similar
to those in listings 6.8 and 6.9, which provide worker classes to remove table rows
and set the value of a table cell. The thread-safety aspect advised each method to

1 If calls that access or modify any state of Swing components are made from a thread other than the
event-dispatching thread, they must be wrapped in Runnable classes and routed through either the
EventQueue.invokeLater() or invokeAndWait() method, which will then execute them in the
event-dispatching thread through their run() methods. We will deal with this specific problem in
chapter 9.

http://www.cs.ubc.ca/~jan/AODPs

248 CHAPTER 8
Design patterns and idioms
pass an instance of the corresponding worker class to the event queue instead of
directly invoking the method. While AspectJ clearly helped to avoid polluting the
core code with the logic that complied with the Swing rules, writing the boilerplate
classes for each kind of update was boring, to say the least. Feeling that something
was amiss, I experimented and created a single aspect that advised all the update
methods with an around advice that invoked proceed() in an unconventional
manner (as I will describe shortly). The result was that all the hand-coded classes
were replaced with a single aspect consisting of only a few lines.

 Soon, I was encountering problems of authorization and transaction manage-
ment and found that using the same scheme provided an elegant solution. Then
I realized that I could use this approach to execute certain time-consuming oper-
ations in a separate thread and thus improve the responsiveness of the UI appli-
cation. So what I had on my hands was a scheme that solved a recurring set of
problems—in other words, a pattern. Discovering this pattern was one of my
“Aha!” moments. (In part 3 of this book, you will see in detail how you can use
the same pattern to modularize crosscutting concerns.)

8.1.1 The current solution
If you were to solve the problem of creating worker objects without using the pat-
tern, you would have to address two chief tasks for each method involved:

1 Implement a class that will route the method and create an object of
that class.

2 Use that object instead of the method that was originally called.

Depending on the situation, you may use either named or anonymous classes. In
either case, you implement an interface such as Runnable that contains a run()
method for calling the operation. If you use named classes, you must add a con-
structor to accept all the arguments that will be passed to the operation. If you use
anonymous classes, you don’t (and can’t) write a constructor. Instead, you create the
class locally and pass the variables from the outer context (where the class is imple-
mented) as arguments to the method called in the run() method. You should mark
each local variable passed as final to comply with Java’s requirement on local classes.

NOTE Although our discussion uses the Runnable interface with a run()
method for illustration purposes, any interface with one method that
executes the operation will work equally well. The authorization exam-
ple in chapter 10 uses various interfaces.

The worker object creation pattern 249
With either style, you need to replace the normal method call with the creation
of a worker object (step 1) and invoke the object (step 2). The sheer amount of
code makes implementation a daunting task; it also increases the risk of missing
certain changes, which may result in undesired system behavior. For example, if
you do not reroute certain calls to Swing components that originate in threads
other than the event-dispatching thread, you may observe hard-to-explain UI
anomalies or even crashes.

 As you will see in the next section, the worker object creation pattern encap-
sulates these steps into just one aspect for all such methods, eliminating the need
to create multiple worker classes.

8.1.2 An overview of the worker object creation pattern

In this pattern, you use the aspect to automatically create objects of anonymous
classes (which are the worker objects). You write a pointcut capturing all the join
points that need routing through the worker objects, and then you write advice
that simply executes the join point inside the run() method in the body of the
anonymous worker class.

 Normally, when proceed() is called directly from within around advice, it exe-
cutes the captured join point. In this case, if you call it from around advice that is
inside a run() method of an anonymous class that is implementing Runnable, you
get a worker object. Calling the run() method of such an object—perhaps at a
later time or even in another thread—will execute the captured join point.

8.1.3 The pattern template
Let’s write a pattern template that you can use to easily create your own imple-
mentation. First we must write a pointcut capturing the needed join points. We
can use a named or anonymous pointcut for this purpose; we don’t need to cap-
ture any context in this pointcut as far as the pattern is concerned. Next, we
advise this pointcut with an around advice, as shown in the following snippet. In
the around advice body, we create a worker object using an anonymous class. To
do this, instead of calling the specific method in run(), we call proceed(). We
then use this worker object as needed:

void around() : <pointcut> {
 Runnable worker = new Runnable () {
 public void run() {
 proceed();
 }
 }
 ... send the worker object to some queue for execution,

250 CHAPTER 8
Design patterns and idioms
 ... or pass it to another subsystem for execution,
 ... or simply call run() directly
}

Let’s use a simple example to illustrate the worker object creation pattern. We’ve
decided that cache pre-fetching and saving a backup copy of a project are expen-
sive operations and can be better executed in a separate thread. (Later, in chap-
ter 9, we expand this example to demonstrate how we can avoid locking the GUI
when calling a time-consuming task.)

 Let’s set up the example with the following three classes, and then we will
apply the pattern to it. The class CachePreFetcher (listing 8.1) contains one
method that simulates the fetching operation by printing a message. Similarly,
the ProjectSaver class (listing 8.2) contains a single method that simulates back-
ing up a project by printing a message.

public class CachePreFetcher {
 static void fetch() {
 System.out.println("Fetching in thread "
 + Thread.currentThread());
 }
}

public class ProjectSaver {
 static void backupSave() {
 System.out.println("Saving backup copy in thread "
 + Thread.currentThread());
 }
}

Now we write a simple Test class (listing 8.3) to exercise the functionality. Later we
will use the same class to see the effect of the aspect we will introduce in the system.

public class Test {
 public static void main(String[] args) {
 CachePreFetcher.fetch();
 ProjectSaver.backupSave();
 }
}

Listing 8.1 CachePreFetcher.java

Listing 8.2 ProjectSaver.java

Listing 8.3 Test.java: exercising the simulated expensive operations

The worker object creation pattern 251
When we compile these classes and run the test program, we get following output:

> ajc CachePreFetcher.java ProjectSaver.java Test.java
> java Test
Fetching in thread Thread[main,5,main]
Saving backup copy in thread Thread[main,5,main]

The output shows that both methods are executed by the main thread itself.
Consequently, the main thread will be blocked for the period of time that the
method is running.

 Now let’s write a simple reusable aspect that executes all join points defined
by the pointcut asyncOperations() in a separate thread. The abstract aspect
AsynchronousExecutionAspect (listing 8.4) contains an abstract pointcut that will
be defined in the concrete aspect. It also contains an advice to the pointcut.

public abstract aspect AsynchronousExecutionAspect {
 public abstract pointcut asyncOperations();

 void around() : asyncOperations() {
 Runnable worker = new Runnable() {
 public void run() {
 proceed();
 }
 };
 Thread asyncExecutionThread = new Thread(worker);
 asyncExecutionThread.start();
 }
}

In the aspect in listing 8.4, the advice body creates an object of an anonymous
class that implements the Runnable interface. In the run() method, it simply calls
proceed() to execute the captured join point. Since worker performs the opera-
tion captured by the advised join point, it is the worker object here. It then cre-
ates a new thread using that object and starts the thread. The effect of this advice
is that instead of directly invoking the join point, the aspect routes the join point
execution in a new thread.

 Next, we create a subaspect that defines the pointcut needed. In this case, we
define that cache pre-fetching and backups should be performed in a separate
thread. The SystemAsynchronousExecutionAspect aspect in listing 8.5 enables
asynchronous execution of the CachePreFetcher.fetch() and ProjectSaver.
backupSave() methods.

Listing 8.4 AsynchronousExecutionAspect.java

252 CHAPTER 8
Design patterns and idioms
public aspect SystemAsynchronousExecutionAspect
 extends AsynchronousExecutionAspect{
 public pointcut asyncOperations()
 : call(* CachePreFetcher.fetch())
 || call(* ProjectSaver.backupSave())
 /* || ... */;
}

Now when we compile all the classes and aspects created so far and run the test
program, we get this output:

> ajc CachePreFetcher.java ProjectSaver.java Test.java
 AsynchronousExecutionAspect.java
 SystemAsynchronousExecutionAspect.java
> java Test
Fetching in thread Thread[Thread-1,5,main]
Saving backup copy in thread Thread[Thread-2,5,main]

As you can see, by introducing a simple aspect to the system, we ensured that
each operation ran in a new thread instead of the main thread.

Getting the return value
Some of the routed calls could be returning a value to the caller. In that case,
proceed() returns the value of the method when the operation has completed.
We can keep this value in the worker object as well as return it from the around
advice. Of course, for the value to make sense, the caller must wait until the exe-
cution of the worker object finishes. In our earlier example, since the caller
thread returns immediately and the operation may execute later, the value
returned to the caller thread will not be the return value of the operation.

 To facilitate managing the return value in a generic fashion, let’s write a simple
abstract class, RunnableWithReturn, that implements Runnable. The run() method
in classes implementing RunnableWithReturn must set the _returnValue member
to the return value of the proceed() statement, which is the return value of the
executed join point. Listing 8.6 shows the RunnableWithReturn abstract class.

package pattern.worker;

public abstract class RunnableWithReturn implements Runnable {
 protected Object _returnValue;

Listing 8.5 SystemAsynchronousExecutionAspect.java

Listing 8.6 RunnableWithReturn.java

➥
➥

The worker object creation pattern 253
 public Object getReturnValue() {
 return _returnValue;
 }
}

Instead of using Runnable, we use the class shown in listing 8.6 as the base class
for an anonymous class inside the advice, as we’ve done in the code snippet that
follows. We also set _returnValue to the value returned by proceed(). After the
worker object is executed, we simply return the object obtained by invoking
worker.getReturnValue():

Object around() : <pointcut> {
 RunnableWithReturn worker = new RunnableWithReturn() {
 public void run() {
 _returnValue = proceed();
 }
 }
 ... use the worker object
 return worker.getReturnValue();
}

Note that you do not need to worry about the type of the object returned from
proceed(). For example, if the captured method returns a float, the AspectJ com-
piler will take care of it by creating a wrapper object to be returned by proceed()
and unwrapping it when you assign the advice’s return value to a float variable.

 Let’s look at a simple example using this mechanism. We will implement an
aspect that uses a worker class for a synchronous call to a method that returns a
value. First, we create a reusable aspect that routes all the calls specified by sync-
Operation() synchronously through a new worker object that we create named
worker. We use a simple mechanism that directly calls the run() method on the
worker object. Typically, you would pass the worker object to an execution thread
and wait for the execution of the worker; for instance, you would pass it to Event-
Queue.invokeAndWait() when using Swing. We will log a message when we are
about to execute the worker object. Listing 8.7 shows the implementation of the
SynchronousExecutionAspect abstract aspect.

import pattern.worker.*;

public abstract aspect SynchronousExecutionAspect {
 public abstract pointcut syncOperations();

Listing 8.7 SynchronousExecutionAspect.java

254 CHAPTER 8
Design patterns and idioms
 Object around() : syncOperations() {
 RunnableWithReturn worker = new RunnableWithReturn() {
 public void run() {
 _returnValue = proceed();
 }};
 System.out.println("About to run " + worker);
 worker.run();
 return worker.getReturnValue();
 }
}

NOTE While executing the worker object by invoking it immediately after its
creation seems wasteful, it does help in certain situations since it pro-
vides the worker object as context. You will see how to use immediate in-
vocation in chapter 11 when we implement transaction management
using AspectJ.

At this point, let’s write a subaspect, SystemSynchronousExecutionAspect.java (list-
ing 8.8), that will route the calls to Math.max() and to all methods of the Vector
class through automatically created worker objects. The reason for choosing
these methods is to illustrate that the aspect handles returning a primitive type,
returning void, and returning an object just as well. The around advice does all
the hard work of wrapping the primitive return values before they are returned
from the advice and then unwrapping and casting the objects correctly after they
are returned from the advice.

import java.util.Vector;

public aspect SystemSynchronousExecutionAspect
 extends SynchronousExecutionAspect{
 public pointcut syncOperations()
 : (call(* Math.max(..))
 || call(* Vector.*(..))
 /* || ... */);

}

Finally, let’s write a simple test program (listing 8.9). It prints the result of each
operation as it executes.

Listing 8.8 SystemSynchronousExecutionAspect.java

The worker object creation pattern 255
import java.util.Vector;

public class TestSynchronous {
 public static void main(String[] args) {
 int intMax = Math.max(1, 2);
 System.out.println("intMax = " + intMax);
 double doubleMax = Math.max(3.0, 4.0);
 System.out.println("doubleMax = " + doubleMax);

 Vector v = new Vector();
 v.add(0, "AspectJ");
 Object str = v.get(0);
 System.out.println("str = " + str);
 }
}

First we compile the program without aspects and see the output:

> ajc TestSynchronous.java
> java TestSynchronous
intMax = 2
doubleMax = 4.0
str = Aspectj

Now when we compile the program with the aspects and run the program, we
see output similar to this:

> ajc TestSynchronous.java SynchronousExecutionAspect.java
 SystemSynchronousExecutionAspect.java
 pattern\worker\RunnableWithReturn.java
> java TestSynchronous
About to run SynchronousExecutionAspect$1@affc70
intMax = 2
About to run SynchronousExecutionAspect$1@1e63e3d
doubleMax = 4.0
About to run SynchronousExecutionAspect$1@1b90b39
About to run SynchronousExecutionAspect$1@18fe7c3
str = AspectJ

As illustrated by the output, the resulting program’s behavior is unchanged from
the original program that did not include any aspects. We now have a mecha-
nism for routing the direct calls through worker objects that requires writing only
a few lines of code. You can extend this mechanism to storing other context
information as well, as you’ll see in chapter 11.

Listing 8.9 TestSynchronous.java

➥
➥

256 CHAPTER 8
Design patterns and idioms
Managing the context collected by the pointcut
Although the pattern itself doesn’t need to collect any context at the pointcut,
you may want to collect some if you need to reuse the pointcut for other pur-
poses. If you do so, just pass the unaltered context to proceed(), as shown here:

void around([context]) : <pointcut> {
 Runnable worker = new Runnable () {
 public void run() {
 proceed([context]);
 }
 }
 ... use the worker object
}

Now by passing the captured context, you can reuse the defined pointcuts for
other purposes.

8.1.4 A summary of the worker object creation pattern

The worker object creation pattern offers a new opportunity to deal with other-
wise complex problems. You can use this pattern in a variety of situations: from
implementing thread safety in Swing applications and improving responsiveness
of GUI applications to performing authorization and transaction management.
Initially, I was fascinated by the amount of time I saved by not having to write as
much code. Later, I felt that the pattern’s real value lies in the sheer elegance and
consistency it brings to the solution. I am sure your experience will be similar.

8.2 The wormhole pattern

The wormhole pattern makes context information from a caller available to a
callee—without having to pass the information as a set of parameters to each
method in the control flow. For example, consider an authorization system,
where many methods need to know who invoked them in order to determine if
the caller should be allowed to execute the operation. The wormhole allows the
methods to access the caller object and its context to obtain this information.

 By creating a direct route between two levels in the call stack, you create a
wormhole and avoid linearly traveling through each layer. This saves you from
having to modify the call chain when you want to pass additional context infor-
mation, and it prevents API pollution.

The wormhole pattern 257
8.2.1 The current solution

If you don’t use AspectJ, there are two ways to pass the caller’s context in a multi-
threaded environment: you can pass additional parameters containing context
or you can use thread-specific storage to set and access the context information.
In either case, multiple modules are involved in the logic that is passing the con-
text. The first way of passing a parameter causes API pollution—every method in
the execution stack must have extra parameters to pass on the context collected.
The second way requires the caller to create a ThreadLocal variable to store the
context information and set its context. While the second approach avoids API
pollution, it entails changes in both caller and callee implementation and
requires an understanding of how the context is stored.

8.2.2 An overview of the wormhole pattern

The basic idea behind the wormhole pattern, shown in figure 8.1, is to specify
two pointcuts: one for the caller and the other for the callee, with the former col-
lecting the context to be transferred through the wormhole. Then you specify
the wormhole at the places of execution of the callee’s join points in the control
flow of a caller’s join points.

Figure 8.1 The wormhole pattern. Each horizontal bar shows a level in the call. The wormhole
makes the object in the caller plane available to the methods in the called plane without passing
the object through the call stack.

258 CHAPTER 8
Design patterns and idioms
In figure 8.1, each level in the call stack is depicted as a plane in the space. To
transfer context from one plane to another, you would normally have to pass it
on to the next plane until it reached the desired location. The wormhole pattern
provides a path that cuts directly through the planes, which avoids having the
context trickle through the levels from caller to callee.

8.2.3 The pattern template

Let’s create a template for the pattern that will allow you to “plug” the pattern
into your system by simply replacing the entities in the template with concrete
ones in your system:

public aspect WormholeAspect {
 pointcut callerSpace(<caller context>)
 : <caller pointcut>;

 pointcut calleeSpace(<callee context>)
 : <callee pointcut>;

 pointcut wormhole(<caller context>, <callee context>)
 : cflow(callerSpace(<caller context>))
 && calleeSpace(<callee context>);

 // advices to wormhole
 around(<caller context>, <callee context>)
 : wormhole(<caller context>, <callee context>) {
 ... advice body
 }
}

In this template we define a pointcut in the caller’s space that collects the associ-
ated context. Similarly, we define a pointcut in the callee’s space. The collected
context in both cases could be an execution and target object as well as any
parameters to the methods involved. We then create a wormhole through these
two spaces with a pointcut that defines the join points captured by the
calleeSpace() pointcut in the control flow of the join points captured by the
callerSpace() pointcut. Since we have the context available for both of these join
points, we can write advice to the wormhole() pointcut using this information.

 Let’s look at a simple example using this pattern; for more complex and com-
plete examples, refer to chapters 11 and 12. The aspect in listing 8.10 creates a
wormhole between a transaction initiator such as an ATM, teller, or Internet
bank and the actual account operations.

The wormhole pattern 259
public aspect AccountTransactionAspect {
 pointcut transactionSystemUsage(TransactionSystem ts)
 : execution(* TransactionSystem.*(..))
 && this(ts);

 pointcut accountTransactions(Account account, float amount)
 : this(account) && args(amount)
 && (execution(public * Account.credit(float))
 || execution(public * Account.debit(float)));

 pointcut wormhole(TransactionSystem ts,
 Account account, float amount)
 : cflow(transactionSystemUsage(ts))
 && accountTransactions(account, amount);

 before(TransactionSystem ts,
 Account account, float amount) returning
 : wormhole(ts, account, amount) {

 ... log the operation along with information about
 ... transaction system, perform authorization, etc.

 }
}

The transactionSystemUsage() pointcut captures all execution join points in a
TransactionSystem object. It collects the object itself as the context.
The accountTransactions() pointcut captures execution of credit() and debit()
methods in the Account class. It collects the account and the amount involved as
the context.
The wormhole() pointcut creates a wormhole between the transaction system oper-
ations and the account operation by capturing all join points that match account-
Transactions() that occur in the control flow of transactionSystemUsage(). The
pointcut also makes available the context captured by the constituent pointcuts.
The advice on the wormhole() pointcut can now use the context. The advice
knows not only the account and the amount but also the transaction system
responsible for causing the account activity.

If this information is logged, perhaps to a database, it can be used to generate
monthly statements showing ATMs accessed by customer for each transaction.

Listing 8.10 AccountTransactionAspect.java

Using transaction
system operations

 b

Using
account
operations

 c

Creating a
wormhole
through b and c

 d

Using the
wormholed context

 e

 b

 c

 d

 e

260 CHAPTER 8
Design patterns and idioms
NOTE Although this implementation of the wormhole pattern collects some
explicit context in form of the caller object and the method arguments,
the implicit context associated with the caller’s type is important infor-
mation in and of itself. For example, in a banking system, activities per-
formed in crediting an account may depend on which kind of system
invoked them. If a debit action is initiated through a check clearance
system, you may fire overdraft protection logic. However, if the same
action were invoked through an ATM machine, you would limit the with-
drawal amount—it doesn’t matter which specific ATM machine initiated
the transaction; it’s enough that an ATM machine did it. Using a worm-
hole pattern in these cases helps avoid passing an extra parameter to
the account operations in order to indicate the type of transaction sys-
tem. This not only avoids API pollution, but also offers nonintrusive
changes if a new kind of caller is added to the system. In this banking
example, you can implement additional rules when a new kind of ac-
count access system is added, such as Internet banking, without making
any system-wide changes.

8.2.4 A summary of the wormhole pattern

You use the wormhole pattern to avoid modifying multiple modules for passing
the caller’s context. This pattern allows you to transfer context without requiring
changes to any of the core modules. With the knowledge available at the callee’s
join point execution, you can easily implement this kind of functionality, which
would otherwise be quite complex.

 Perhaps your next assignment will apply this pattern to real space travel!

8.3 The exception introduction pattern

When using aspects to introduce crosscutting concerns into a system, I have
often found it necessary to throw a checked exception that was not originally part
of the join point’s list of declared exceptions. On each occasion, I had to make a
few choices in handling the specific exception for the crosscutting concern, and I
needed a pattern to deal with all these situations in a consistent way. For that rea-
son, I created the exception introduction pattern to address concern-specific
checked exceptions in a systematic manner. In this book, you will see examples of
this pattern in chapters 10 and 11.

 AspectJ does not allow an advice to declare that it may throw a checked
exception (an exception that extends Exception directly or indirectly instead of

The exception introduction pattern 261
RuntimeException) unless its advised join points have declared that they may
throw the same exception. However, on many occasions, the weaving of concerns
into a system requires that an aspect deal with new checked exceptions. For
example, your aspects may use commonly available libraries and services to
implement the underlying mechanism, such as JDBC for database access or JAAS
for authentication; the exceptions they throw are usually checked exceptions.
Because the advice cannot declare that it may be throwing these exceptions, you
need another way of dealing with them.

 Further, certain kinds of crosscutting concerns, such as error recovery and trans-
action management, require that aspects capture exceptions of all types thrown by
the join points under consideration and perform logic in the catch blocks. How-
ever, what should the aspect do with the exception after performing its concern-
specific logic in the catch block? This is an especially complex problem when
aspects are reusable and do not know about business-specific exceptions.

NOTE AspectJ’s restriction that prevents an advice from declaring that it may
throw additional checked exceptions is neither an oversight nor a short-
coming. If this restriction did not exist, it would mean potential system-
wide changes. Consider, for example, adding a database persistence layer
using AspectJ. If AspectJ allowed advice to add a new checked exception,
such as SQLException, to the list of declared exceptions for an advised
method, the callers of the methods, who never expected the called meth-
od to throw SQLException, would now have to deal with it. They could
either catch the exception or declare that they will also throw SQLExcep-
tion. With the later choice, the second-level caller would also have to
make a similar choice, and so on. In a way, this “limitation” is similar to
Java’s restriction of not allowing overridden methods in a derived class to
declare that they will throw any new checked exception.

In this section, we explain the exception introduction pattern that deals with the
problems associated with the introduction of concern-specific exceptions via
AspectJ. The pattern can also be used to handle business-specific exceptions that
are caught in reusable, generic aspects.

8.3.1 The current solution

Sometimes when you add an aspect that implements some crosscutting logic into
a system, the advice in the aspect needs to catch a checked exception thrown by
the execution of the underlying logic. Dealing with the caught exception after

262 CHAPTER 8
Design patterns and idioms
executing the logic often poses unclear choices. Let’s set up an example to help
us understand the problem and its current solution.

 Consider BusinessClass, in listing 8.11, a generic representation of any busi-
ness entity that implements core concerns. It contains a few business methods,
one of which will throw a checked BusinessException.

public class BusinessClass {
 void businessMethod1() {
 // business logic...
 }

 void businessMethod2() throws BusinessException {
 // business logic...
 throw new BusinessException();
 }
}

Listing 8.12 shows the implementation of BusinessException that extends
Exception.

public class BusinessException extends Exception {
}

Now let’s write an aspect that will introduce a crosscutting concern (such as
authentication) to BusinessClass. As a part of the concern implementation, the
before advice to the operations() pointcut calls a method concernLogic(), which
throws a checked exception. As a first implementation, we let the exception thrown
by concernLogic() propagate to callers and we declare that the advice may throw
ConcernCheckedException. Listing 8.13 shows the abstract ConcernAspect.

public abstract aspect ConcernAspect {
 abstract pointcut operations();

 before() throws ConcernCheckedException : operations() {
 concernLogic();
 }

Listing 8.11 BusinessClass.java

Listing 8.12 BusinessException.java

Listing 8.13 ConcernAspect.java

The exception introduction pattern 263
 void concernLogic() throws ConcernCheckedException {
 throw new ConcernCheckedException(); // simulating failure
 }
}

Because the advice in the aspect in listing 8.13 declares that it will throw Con-
cernCheckedException and because the advised methods (defined by the con-
crete aspect BusinessConcernAspect in listing 8.15) do not declare that they may
throw that exception, we will get compiler errors. Note that if the advice did not
declare that it would throw the exception, we would still get compiler errors.
ConcernCheckedException, in listing 8.14, is the concern-specific checked excep-
tion that is caught and thrown by the advice.

public class ConcernCheckedException extends Exception {
}

To enable concern weaving in the core implementation, let’s write a subaspect,
BusinessConcernAspect (listing 8.15), that extends ConcernAspect and provides a
definition for the abstract pointcut in the base aspect.

public aspect BusinessConcernAspect extends ConcernAspect {
 pointcut operations() : call(* BusinessClass.business*());
}

Finally, consider a simple test class (listing 8.16) that calls both methods on Busi-
nessClass. We put the second method in a try/catch block to capture the checked
exception that may be thrown so that we can suitably respond to the failure.

public class TestException {
 public static void main(String[] args) {
 BusinessClass bc = new BusinessClass();
 bc.businessMethod1();
 try {
 bc.businessMethod2();
 } catch (BusinessException ex) {

Listing 8.14 ConcernCheckedException.java

Listing 8.15 BusinessConcernAspect.java

Listing 8.16 TestException.java

264 CHAPTER 8
Design patterns and idioms
 // Do something...
 // Log it, execute recovery mechanism, etc.
 System.out.println("Caught:" + ex);
 }
 }
}

When we compile these classes and the aspect, we get this output:

> ajc *.java
F:\aspectj-book\ch08\section8.3.1\TestException.java:6

 can't throw checked exception 'ConcernCheckedException' at this
 join point 'method-call(void BusinessClass.businessMethod1())'

F:\aspectj-book\ch08\section8.3.1\ConcernAspect.java:6
 can't throw checked exception 'ConcernCheckedException' at this
 join point 'method-call(void BusinessClass.businessMethod1())'

F:\aspectj-book\ch08\section8.3.1\TestException.java:8
 can't throw checked exception 'ConcernCheckedException' at this
 join point 'method-call(void BusinessClass.businessMethod2())'

F:\aspectj-book\ch08\section8.3.1\ConcernAspect.java:6
 can't throw checked exception 'ConcernCheckedException' at this
 join point 'method-call(void BusinessClass.businessMethod2())'

4 errors

The execution resulted in exceptions that indicate that it is an error to throw the
checked exception ConcernCheckedException from the advice on any business
method. In the case of businessMethod1(), throwing any checked exception from
it is an error, whereas in the case of businessMethod2(), throwing any checked
exception other than BusinessException is an error.

 The most common way to deal with the situation is to simply log the caught
exception and continue. We can modify the advice in ConcernAspect (listing 8.13)
in the following way to catch the exception:

 before() : operations() {
 try {
 concernLogic(); // throws ConcernCheckedException
 } catch (ConcernCheckedException ex) {
 // log the exception
 }
 }

In this snippet, the advice no longer declares that it will throw ConcernChecked-
Exception since the advice consumes the exception thrown by concernLogic().
This is often undesirable since the higher-level caller may need to be aware of
the failure condition so that it can make an informed choice in dealing with it. A

➥
➥

➥
➥

➥
➥

➥
➥

The exception introduction pattern 265
much better approach is to propagate the caught exception directly to the callers
after wrapping it in an exception. In the next section, we will examine a pattern
that shows how to achieve this desirable behavior in a systematic fashion.

8.3.2 An overview of the exception introduction pattern

The exception introduction pattern simply suggests that you catch the original
checked exception, perform any logic, and throw a new runtime exception that
wraps the checked exception. We need to create a concern-specific runtime
exception that can set the checked exception as its cause (by either passing the
caught exception to the new exception’s constructor or by using the initCause()
method). For example, when you are implementing a persistence aspect using
JDBC, you may throw a PersistenceRuntimeException that wraps the original
checked SQLException.

 While throwing a runtime exception propagates the exception to higher-level
caller, there will be a problem because the callers, unaware of the aspects present
in the system, aren’t prepared to catch the unchecked exception. Later, we will
deal with this situation, which builds on top of the base exception introduction
pattern and restores the original checked exception thrown.

8.3.3 The pattern template

Let’s develop a template for the exception introduction pattern to achieve
the goal of propagating the thrown exception to the caller of the advised
methods and preserving the exception type so that the callers can see the
original exception.

Propagating the concern-specific exception
The template will catch the concern-specific ConcernCheckedException, wrap it in
a ConcernRuntimeException, and throw the runtime exception. We will develop
our template using the generic entities that we used in section 8.3.1. (When
using this pattern, you would replace the generic entities with specific entities.)
Listing 8.17 shows the modified version of ConcernAspect that uses the exception
introduction pattern.

public abstract aspect ConcernAspect {
 abstract pointcut operations();

 before() : operations() {
 try {

Listing 8.17 ConcernAspect.java: modified to use the exception introduction pattern

266 CHAPTER 8
Design patterns and idioms
 concernLogic();
 } catch (ConcernCheckedException ex) {
 throw new ConcernRuntimeException(ex);
 }
 }

 void concernLogic() throws ConcernCheckedException {
 throw new ConcernCheckedException(); // simulating failure
 }
}

The aspect in listing 8.17 uses ConcernRuntimeException, which is implemented
in listing 8.18. The constructor of this exception takes the originally thrown
exception as a parameter that indicates the cause of the exception.

public class ConcernRuntimeException extends RuntimeException {
 public ConcernRuntimeException(Throwable cause) {
 super(cause);
 }
}

The before advice in ConcernAspect simply catches any concern-specific checked
exception, wraps it in a concern-specific unchecked exception, and throws it.
Wrapping the original exception as the thrown exception’s cause provides access
to the original exception, if a caller needs it. Now when we compile the classes
along with ConcernAspect in listing 8.17, we get a successful compilation:

> ajc *.java
> java TestException
Exception in thread "main" ConcernRuntimeException:

 ConcernCheckedException
... more stack trace

As the output shows, a ConcernRuntimeException that wraps a ConcernChecked-
Exception is thrown.

 You may be wondering why we chose a concern-specific runtime exception as
opposed to a generic runtime exception. If we were to use a generic runtime
exception (such as the RuntimeException class itself), we’d have to consider at
least two issues:

■ The exception call stack would be harder to understand since exceptions
thrown by all such aspects would result in same exception type.

Listing 8.18 ConcernRuntimeException.java

➥

The exception introduction pattern 267
■ More seriously, if the exception were generic, a caller would have difficulty
distinguishing between various concern-specific exceptions. The exception
handler would capture all the exceptions, which could potentially be
thrown by other aspects using the same exception-handling policy. The
handler would then need to examine the cause of the original exception to
determine if the exception were of any interest. Further, if two concerns
generated the same type of exception, it would be impossible to decipher
which concern led to the failure.

Another question you may have is, why not simply soften the exception thrown
by concernLogic()? Using declare soft may suffice in demoting the checked
concern-specific exceptions to unchecked ones. However, you’d have the same
problems you’d have with using the generic runtime exception. After all, soften-
ing is equivalent to using SoftException as a generic runtime exception.

Propagating the business-specific exception
While so far we have applied the exception introduction pattern only to concern-
specific checked exceptions, it can be used in dealing with business-specific
checked exceptions as well. On occasion, the advice in a generic aspect needs to
catch all exceptions. The problem is that the aspect cannot rethrow the business-
specific checked exceptions because it does not know about them and hence can-
not declare that its advice should throw them. Once an exception is caught, we
have to deal with it somehow. Besides the obviously poor choice of doing noth-
ing, we can choose to throw a runtime exception modeled after the exception
introduction pattern.

 Let’s see how we can apply the pattern to business-specific exceptions by
modifying the ConcernAspect to catch all the exceptions that are thrown by meth-
ods that its pointcut captures. First, we write around advice that proceeds with
the captured operation in a try/catch block. When the catch block is executed, it
performs concern-specific error-handling logic and throws a new ConcernRuntime-
Exception, wrapping the caught exception. Listing 8.19 shows the aspect imple-
mentation after we’ve made the modifications.

public abstract aspect ConcernAspect {
 abstract pointcut operations();

 Object around() : operations() {
 try {
 return proceed();

Listing 8.19 ConcernAspect.java: with advice that catches all exceptions

268 CHAPTER 8
Design patterns and idioms
 } catch (Throwable ex) {
 // do something
 throw new ConcernRuntimeException(ex);
 }
 }
}

When we compile the aspect in listing 8.19 with the rest of classes and run the
Test class, we get the following output:

> ajc *.java
> java TestException
Exception in thread "main" ConcernRuntimeException: BusinessException
... more stack trace

As you can see, a runtime exception wrapping the original business-specific
checked exception is now propagated to the caller.

Preserving the exception specification requirement
While we achieved a successful compilation and propagation of an exception, the
output is bound to baffle TestException class developers; they expect the catch
block for businessMethod2() to execute, but that didn’t happen here. The reason
is that the around advice in ConcernAspect is catching the BusinessException (along
with any other exception) and throwing it after wrapping in a ConcernRuntime-
Exception. This also violates the requirement of the businessMethod2() method
to throw a business-specific exception instead of concern-specific one. This prob-
lem is not created by applying the basic pattern, but is the inherent issue associ-
ated with the aspect’s need to summarily capture exceptions—the business
exception and everything else—to perform its logic.

 Note that we did not have the same problem with the aspect in listing 8.17;
there we only caught the ConcernCheckedException, letting the business-specific
exception automatically propagate.

 So we now have to deal with the challenge of preserving the exception specifi-
cation requirement on the methods that are affected by concern implementation,
while letting the aspect perform its logic by capturing all types of exceptions. In
this section, we add another aspect to the system that will augment the exception
introduction pattern by restoring the originally thrown checked exception. Note
that this aspect is specific to your system and not reusable. Listing 8.20 shows the
implementation of the aspect that restores BusinessException when it is caught
by the ConcernRuntimeException thrown by ConcernAspect.

The exception introduction pattern 269
public aspect PreserveBusinessException {
 declare precedence: PreserveBusinessException, BusinessConcernAspect;

 after() throwing(ConcernRuntimeException ex)
 throws BusinessException
 : call(* *.*(..) throws BusinessException) {
 Throwable cause = ex.getCause();
 if (cause instanceof BusinessException) {
 throw (BusinessException)cause;
 }
 throw ex;
 }
}

The advice will be invoked after ConcernRuntimeException is thrown by any
method that declares that it may throw a business-specific exception. The advice
declares that it also may throw the business exception. In the body of the advice,
we check whether the cause for the runtime exception that has been caught is
the business exception we are trying to preserve. If it is, we throw the cause
exception after casting it to the BusinessException type.

 Now when we run the program, we get the following output, just as expected:

> ajc *.java
> java TestException
Caught: BusinessException

Problem solved. Now the callers get the exception they are prepared for and
won’t need to modify their exception-processing logic.

8.3.4 A summary of the exception introduction pattern

You often have to deal with concern-specific exceptions when implementing
crosscutting concerns. We’ve presented a pattern that addresses this need in a
simple and systematic way using concern-specific runtime exceptions in place of
checked exceptions. The pattern also deals with the problem that arises when
you must implement a crosscutting concern to summarily catch all types of
exceptions, including business exceptions. I encourage you to experiment with
the basic pattern as well as the variations in order to understand the interaction.

Listing 8.20 PreserveBusinessException.java

270 CHAPTER 8
Design patterns and idioms
8.4 The participant pattern

Many operations in a system share common characteristics, ranging from simple
transactional properties, to expected duration of method calls, to IO-access
properties, to remote access properties. Since these operations are spread over
many modules, augmenting or altering their behavior is a crosscutting concern.
The participant pattern provides a way to modularize such characteristics-based
crosscutting concerns using AspectJ. The pattern helps to capture join points
based on their characteristics when the name-based pointcuts just aren’t enough.

 Capturing operations with common characteristics across a system is essential
in ensuring consistent system behavior. For example, you may want to surround all
slow operations in the system with a wait cursor. The common AspectJ approach
for accomplishing this is to define pointcuts based on the method signature. For
example, a method throwing an IOException is potentially performing some IO
operation. This information, in conjunction with the hypothesis that IO operations
are slow to execute, allows us to identify and capture a few slow methods. Similarly,
we can consider all methods whose name starts with set as potentially state-atering
operations. However, we often cannot capture all the join points sharing similar
characteristics just by looking at the method signatures. For example, while we did
characterize all IO operations as potentially slow, how do we capture other opera-
tions that are slow simply because they perform complex computations?

 Many crosscutting concerns, such as transaction management and authentica-
tion, tend to consist of operations that cannot be captured by property-based point-
cuts. Developers usually assign the name of a method based on the core operation
carried by it, so the method’s name does not reflect the peripheral characteristics of
a method. For example, we know that methods setting a state typically start with
set. However, the method name does not reflect the peripheral characteristics of
the method, such as speed or its need to execute in a transaction context. This
makes it hard to capture methods that have those auxiliary characteristics.

 Consider a transaction management problem: The methods that need to be
in a transaction are likely to be named after the business logic they perform, such
as processOrder(). The names in this case give no indication that the methods
need transaction management support. Therefore, property-based pointcuts
using wildcards cannot identify the join points in these methods.

 To capture such join points, you need the collaboration of the implementing
classes. One possibility is to supplement the implementation with metadata indi-
cating the characteristics that are not derivable from the signature patterns of
the implementation.

The participant pattern 271
NOTE JSR 175 proposes a way to add metadata in Java. While it is not clear if
this will mean a language extension, special JavaDoc tags, or some other
form, the presence of metadata specifying the characteristics of the
methods will help immensely in capturing crosscutting concerns for
characteristics that cannot be ascertained by the signature. For example,
you could use metadata to specify that a method needs a long execution
time. With JSR 175, AspectJ would also need to be augmented to allow
defining pointcuts based on the method’s metadata. Until such a facility
is available, though, we will have to rely on other techniques.

The participant pattern helps capture the methods based on their characteristics.
Keep in mind, though, that the participant pattern (or a variation of it) does require
modifications to the core implementation, and there is the possibility that you may
not identify all of the operations that need changes. For this reason, you should use
the regular name- and property-based pointcuts to the fullest extent possible.

8.4.1 Current solutions

In this section, we look at characteristics-based crosscutting using AspectJ. First
we look at a simple technique that allows you to advise join points that share cer-
tain characteristics. However, because it makes tracking changes in the imple-
mentation difficult, we then improve the solution to make it easier to maintain.

Take one
Let’s write an aspect, DesiredCharacteristicsAspect (listing 8.21), that advises
all the join points that share certain characteristics.

public aspect DesiredCharacteristicsAspect {
 Object around() : call(* MyClass1.desiredCharacteristicMethod1())
 || call(* MyClass1.desiredCharacteristicMethod2())
 || call(* MyClass2.desiredCharacteristicMethod1())
 || call(* MyClass2.desiredCharacteristicMethod2())
 /* || ... */ {

 // advice code

 }
}

Listing 8.21 DesiredCharacteristicsAspect.java: the first version

272 CHAPTER 8
Design patterns and idioms
The aspect simply includes a list in the pointcut of all the methods that have the
characteristics. The problem with this approach is that the aspect is explicitly
aware of all the classes and methods in the list. If a new class is added to the sys-
tem containing a method with the same characteristics, it will not be advised
until it is added to the pointcut. Similarly, if a method that is originally part of
the list changes its implementation so that it no longer bears the characteristics,
it will continue to be advised until the aspect is changed to remove the method
from the pointcut definition. Both the classes and aspects need to be explicitly
aware of the existence of each other to remain coordinated.

Take two
Another fundamental problem is that characteristics such as expected execution
time are implementation-dependent and may change often between implemen-
tation versions. Therefore, let’s see if we can tie the pointcut definitions to the
classes themselves.

 Recall that a class can include pointcuts (but not advice). Since classes know
about characteristics of the methods contained in them, they are qualified to
specify pointcuts identifying certain characteristics. One way you can perform
characteristics-based crosscutting is by requiring classes to encode a pointcut that
captures join points with specific characteristics. Listing 8.22 shows how
MyClass1 includes a pointcut to capture all its methods that have the desired
characteristics. Similarly, MyClass2 (listing 8.23) includes a pointcut that captures
its methods with the desired characteristics.

public class MyClass1 {

 // MyClass1's implementation

 public pointcut desiredCharacteristicJoinPoints() :
 call(* MyClass1.desiredCharacteristicMethod1())
 || call(* MyClass1.desiredCharacteristicMethod2())
 /* || ... */;
}

public class MyClass2 {

 // MyClass2's implementation

 public pointcut desiredCharacteristicJoinPoints() :

Listing 8.22 MyClass1.java

Listing 8.23 MyClass2.java

The participant pattern 273
 call(* MyClass2.desiredCharacteristicMethod1())
 || call(* MyClass2.desiredCharacteristicMethod2())
 /* || ... */;
}

Now we can write an aspect to advise both desiredCharacteristicJoinPoints()
pointcuts defined in MyClass1 and MyClass2. Listing 8.24 shows the second ver-
sion of DesiredCharacteristicsAspect, which advises pointcuts specified in
MyClass1 and MyClass2.

public aspect DesiredCharacteristicsAspect {
 Object around() : MyClass1.desiredCharacteristicJoinPoints()
 || MyClass2.desiredCharacteristicJoinPoints() {
 // advice code
 }
}

The version in listing 8.24 is better than the earlier solution. Instead of being
aware of classes and methods, the aspect is now aware of only the classes
because it uses the pointcuts defined in them to capture the methods. Never-
theless, the need to be explicitly aware of all the classes doesn’t make it an
optimal solution. If a new class is added to the system, the aspect will not
advise the new class until you add it to the aspect. Note also that in the
advice, it is illegal to specify a pointcut such as *.desiredCharacteristicJoin-
Points(). We must explicitly enumerate all the pointcuts we want to advise
from each class.

8.4.2 An overview of the participant pattern

The participant pattern builds on the idea of classes that contain a pointcut
denoting certain characteristics. Instead of including a pointcut definition
directly inside each class and using those pointcuts in an aspect that provides the
advice, the classes themselves define a subaspect that extends the advising aspect
and provides the pointcut definition. In a way, this pattern reverses the roles—
instead of making aspects aware of classes and methods, we now make the classes
aware of the aspects.

 Let’s examine the structural overview of the pattern:

Listing 8.24 DesiredCharacteristicsAspect.java: the second version

274 CHAPTER 8
Design patterns and idioms
1 We first must write an abstract aspect that contains abstract pointcut(s)
denoting join points with the desired characteristics. These pointcuts
form a kind of “aspectual interface.” The aspect also advises each point-
cut (or combination of them) with the required behavior. We will think of
this as an inviting aspect—it invites others to participate in the advice it
offers. Such an offer is strictly an invitation or opt-in only.

2 Each class that wants to participate in such a behavior includes a con-
crete subaspect extending the abstract invitation aspect. Each of these
subaspects simply provides the implementation of the abstract pointcut
for the enclosing class. Note that the concrete subaspects do not actually
have to be nested aspects of the class—they could be peer aspects, for
example. This way, each class that wants to participate in the collabora-
tion needs to do so explicitly—hence the name of the pattern.

8.4.3 The pattern template

In this section, we develop a template for the pattern, and you will be able to
implement characteristics-based crosscutting in your system by creating con-
crete implementations based on this template. Listing 8.25 shows the
abstract aspect that contains the core logic for implementing the concern;
however, it defers the definition of the desiredCharacteristicJoinPoints()
pointcut to subaspects.

abstract aspect AbstractDesiredCharacteristicAspect {
 public abstract pointcut desiredCharacteristicJoinPoints();

 // Example uses around(), but before() and after() work as well
 Object around() : desiredCharacteristicJoinPoints() {
 // advice code
 }
}

The required crosscutting behavior is in the around advice to the abstract point-
cut. Listing 8.26 contains a version of MyClass1 that includes a nested subaspect
of AbstractDesiredCharacteristicAspect; the subaspect defines the abstract
pointcut of the base aspect.

Listing 8.25 AbstractDesiredCharacteristicAspect.java: the base

The participant pattern 275
public class MyClass1 {

 // MyClass1's implementation

 public static aspect DesiredCharacteristicParticipant
 extends AbstractDesiredCharacteristicAspect {
 public pointcut desiredCharacteristicJoinPoints() :
 call(* MyClass1.desiredCharacteristicMethod1())
 || call(* MyClass1.desiredCharacteristicMethod2())
 /* || ... */;
 }
}

In listing 8.26, the nested subaspect declares that the MyClass1.desired-
CharacteristicMethod1() and MyClass1.desiredCharacteristicMethod2() methods
have the desired characteristics to participate in the functionality offered by the
base AbstractDesiredCharacteristicAspect. The effect of this aspect is that the
advice to desiredCharacteristicJoinPoints() in the base aspect is applied to
the specified methods. MyClass2 in listing 8.27 participates in the collaboration
in the same way.

public class MyClass2 {

 // MyClass2's implementation

 public static aspect DesiredCharacteristicParticipant
 extends AbstractDesiredCharacteristicAspect {
 public pointcut desiredCharacteristicJoinPoints() :
 call(* MyClass2.desiredCharacteristicMethod1())
 || call(* MyClass2.desiredCharacteristicMethod2())
 /* || ... */;
 }
}

There can be many more participants in addition to MyClass1 and MyClass2 in
the system. Each of the participating nested subaspects provide a definition to
capture the join points in their enclosing class, thus applying the functionality of
the base aspect to those join points. Figure 8.2 depicts the structure.

Listing 8.26 MyClass1.java: participating in the collaboration

Listing 8.27 MyClass2.java: participating in the collaboration

276 CHAPTER 8
Design patterns and idioms
With the participant pattern, the collaborating classes explicitly participate in
the implementation of the crosscutting concerns by extending an inviting
abstract aspect and providing the definition for its abstract pointcut. Note that
although we show a one-class/one-participant kind of collaboration, the partici-
pant pattern does not require it. It is possible, for example, to have one partici-
pant per class hierarchy or package. However, in such cases, because the aspect is
not nested in the class with the characteristics-bearing methods, you must
remember to modify the pointcut in the participant aspect when the list of meth-
ods matching the desired characteristics changes. Additionally, if a signature pat-
tern exists, the participating aspect may also use property-based pointcuts to
capture the methods that have the required characteristics.

8.4.4 A summary of the participant pattern

The participant pattern lets you implement characteristic-based crosscutting by
embedding the knowledge of such characteristics where it belongs—in the
classes. Only classes have the potential of knowing such information, so the pat-
tern makes tracking changes in the class a local affair. While the pattern requires
explicit participation by classes in the aspect collaboration, their knowledge of
the aspect is limited to defining the implementation of the abstract aspect.

 The biggest consequence of using this pattern, unlike with most other pat-
terns and usages, is that the collaboration flow is reversed. In the participant

Figure 8.2 A typical structure using the participant pattern. For each class, a nested subaspect
exists to make the class participate in the collaboration offered by the base aspect.

Idioms 277
pattern, the aspect makes the class participate in the aspect collaboration, while
in other cases, aspects affect classes without their knowledge.

8.5 Idioms

As we discussed earlier, idioms are really smaller, simpler design patterns. They
allow you to apply a solution to a specific problem, much in the same way you use a
design pattern. You can also think of idioms as “programming tips” providing solu-
tions that fit more naturally into the target programming language. In this section,
we introduce a few of those idioms. You will see how we use them in real examples
throughout the rest of this book. Understanding these idioms up front will allow
you to focus more on the core logic of your solution rather than on its intricacies.

8.5.1 Avoiding infinite recursion

This is actually an “anti-idiom” in that you should avoid getting into these situa-
tions. Infinite recursion caused by advice to a join point in the aspect itself is prob-
ably the most common problem faced by beginners using AspectJ. Fortunately, the
problem is simple to understand and the solution is easy to implement.

 Consider the TestRecursion class in listing 8.28, which prints a message in
the main() method. Also consider a tracing aspect (listing 8.29) that advises calls
to all the methods in any class to print the join point’s information.

public class TestRecursion {
 public static void main(String[] args) {
 System.out.println("Hello");
 }
}

public aspect Tracing {
 before() : call(* *.*(..)) {
 System.out.println("Calling: " + thisJoinPointStaticPart);
 }
}

The tracing aspect is a simple aspect that contains a before advice and prints
thisJoinPointStaticPart in the advice body. When we compile and run the test
program, we get the following output:

Listing 8.28 TestRecursion.java

Listing 8.29 Tracing.java

278 CHAPTER 8
Design patterns and idioms
> ajc TestRecursion.java Tracing.java
> java TestRecursion
Exception in thread "main" java.lang.StackOverflowError
 at org.aspectj.runtime.reflect.StringMaker.
 makeTypeName(StringMaker.java:99)
 at org.aspectj.runtime.reflect.StringMaker.
 makeTypeName(StringMaker.java:108)
 at org.aspectj.runtime.
 reflect.StringMaker.addTypeNames(StringMaker.java:118)
 at org.aspectj.runtime.reflect.StringMaker.
 addSignature(StringMaker.java:134)
 at org.aspectj.runtime.reflect.MethodSignatureImpl.
 toString(MethodSignatureImpl.java:61)
 at org.aspectj.runtime.reflect.JoinpointImpl$StaticPartImpl.
 toString(JoinpointImpl.java:51)
 at org.aspectj.runtime.reflect.JoinpointImpl$StaticPartImpl.
 toString(JoinpointImpl.java:56)
 at java.lang.String.valueOf(String.java:2173)
 at java.lang.StringBuffer.append(StringBuffer.java:369)
 at Tracing.before0$ajc(Test.java:9)
 ...

What gives? The problem is that the call to System.out.println() in the advice
itself is being advised. Therefore, the advice gets invoked recursively, eventually
leading to a stack overflow.

 The idiom to avoid such undesirable behavior is to prevent tracing the join
points in the aspect itself by adding the within pointcut, as follows:

public aspect Tracing {
 before() : call(* *.*(..)) && !within(Tracing) {
 System.out.println("Calling: " + thisJoinPointStaticPart);
 }
}

Now when we compile and run the program, we get this output:

> ajc TestRecursion.java Tracing.java
> java TestRecursion
Calling: call(void java.io.PrintStream.println(String))
Hello

In general, you should be careful when you define a pointcut that captures a
wide range of join points, such as the call to all methods in the system. You usu-
ally want to exclude join points in the aspect itself. This simple idiom will save
you quite a bit of frustration, especially if you are just starting to learn AspectJ. If
you are a seasoned AspectJ developer, you probably know this so well that you
may have just skipped over this section!

➥

➥

➥

➥

➥

➥

➥

Idioms 279
8.5.2 Nullifying advice

When using AspectJ on projects, I often try removing advice for what-if scenarios
and isolating advice to see the effect of other advice when multiple advices apply
to a join point. This idiom presents a simple way to abrogate certain advice in the
system. There are a few ways to achieve this goal, and they carry certain implica-
tions. In this section, we will also show you how to (and how not to) nullify advice.

 Consider the following snippet from an aspect:

pointcut operation(): <pointcut-definition>;

before() : operation() {
 ...
}

Now if we need to turn off the advice, we simply combine the pointcut with an
if(false), as shown here:

before() : operation() && if(false) {
 ...
}

This pointcut will not match any join point, given that it is impossible to evaluate
an if(false) to true. The result, therefore, is the logical removal of the advice
from the system.

 A common mistake that is made when trying to achieve the same result with
around advice is to use the if(false) construct to surround the code inside the
advice body, as shown in the following snippet:

void around() : operation() {
 if(false) {
 ...
 proceed();
 ...
 }
}

While the use of the if(false) construct works well for commenting out a block
of code in Java methods, it doesn’t behave as expected for around advice that
calls proceed() in its body. In this case, if(false) in the advice body results in
bypassing the captured join point. The reason is that unless the around advice
calls proceed(), the captured join point will not be executed at all. Now the
advice is doing exactly the opposite of what we expected; we wanted the advice
to leave the program flow unaltered as if the advice did not exist—and instead it
eliminated the captured join point’s execution.

280 CHAPTER 8
Design patterns and idioms
 There are other ways to nullify advice. All the techniques revolve around modi-
fying the pointcut definition so it doesn’t match any other join point. For example,
we could combine the pointcut with the negated version of it, as follows:

before() : operation() && !operation() {
 ...
}

While this code performs as expected, the suggested technique of if(false) is
decisively simple and clearly catches the eye. In this code snippet, readers will need
to think for a while to decipher the pointcut definition to realize that the && !oper-
ation() is meant to nullify the advice. For pointcut definitions containing a com-
plex combination of multiple other pointcuts, this becomes needlessly complicated.

 So, instead of analyzing the scenario in each case and trying out a different
style for various kinds of advice, simply follow the suggested idiom of combining
if(false) with the pointcut itself.

 Now you know precisely how to nullify advice. Equally important, you also
know how not to do it. Using an idiom not only saves you effort, but also lets you
mechanically perform simple tasks and avoid potential traps.

8.5.3 Providing empty pointcut definitions

Sometimes you need to supply a pointcut definition that matches no join point
in the system. You need to do this, for example, when you create concrete sub-
aspects that must define each abstract pointcut in the base aspect but you do not
have any matching join points for some of the abstract pointcuts. Using this
technique is equivalent to a concrete class providing a blank implementation for
certain abstract methods in the base class. Listing 8.30 shows a reusable aspect
that contains two abstract pointcuts: one to capture normal operations and the
other to capture critical operations so that the advice can log exceptions thrown
by those join points.

public abstract aspect AbstractErrorReportingAspect {
 public abstract pointcut normalOperations();

 public abstract pointcut criticalOperations();

 after() throwing : normalOperations() || criticalOperations() {
 ... log the error
 }

 after() throwing : criticalOperations() {

Listing 8.30 AbstractErrorReportingAspect.java

Idioms 281
 ... code to handle critical errors
 ... page, email, call, contact by all available means
 }
}

Any aspect that is implementing AbstractErrorReportingAspect must provide
the definition for both the normalOperations() and criticalOperations() point-
cuts. The problem occurs when your system does not have any join points that
match such a pointcut, since you still need to define each abstract pointcut in the
concrete subaspects. While you may apply a variation of the idiom in section 8.5.2
and use the if(false) pointcut as the pointcut definition, the scheme does not
work with around advice due to the mismatch of the advice’s return type and the
join points’ return type. The solution is to use a special form of named pointcut
that omits the colon (:) and the pointcut definition following it. This pointcut
will capture no join point, and that is exactly what we need. Listing 8.31 illus-
trates this idiom.

public aspect SystemErrorReportingAspect
 extends AbstractErrorReportingAspect {
 public pointcut normalOperations();

 public pointcut criticalOperations() : call(* com..System.*(..));
}

In this case, SystemErrorReportingAspect does not have any operations that can
be categorized as normal operations and therefore does not have to capture any
join points with the normalOperations() pointcut. However, to make System-
ErrorReportingAspect a concrete aspect, we must supply a definition for each
pointcut. We use the special form of poincut syntax to get the effect of not cap-
turing any join points for normal operations.

8.5.4 Providing a default interface implementation

AspectJ’s introduction mechanism allows you to introduce members not only to
classes but also to interfaces. This means you now can introduce data as well as
methods. By using this mechanism to provide a default interface implementation,
you can avoid writing code in many classes and make changes easy to implement.

 Plain Java does not allow interfaces to contain implementation code; only
classes are allowed to implement the methods. On a few occasions, it would be

Listing 8.31 SystemErrorReportingAspect.java

282 CHAPTER 8
Design patterns and idioms
useful to have some default implementation in the interfaces as well. Without
AspectJ, the usual strategy is to create a default implementation of the interface
and let the classes that would normally implement the interface actually extend
this default implementation class instead. This works fine as long as the imple-
menting classes need to extend this class alone. If there are two such default
implementation classes, this solution starts to break down. It also breaks down if
you want to extend some other class and implement an interface using its default
implementation class. You can make the task somewhat easier with the delega-
tion pattern (which delegates each method to an instance of the default imple-
mentation class). Nevertheless, you do end up with several one-line methods,
which causes code scattering—one of the symptoms of a crosscutting concern.

 Consider the simple interface in listing 8.32, which models entities that can
have a name. We will use this interface to show how AspectJ can simplify the job
of providing the default implementation for an interface.

public interface Nameable {
 public void setName(String name);
 public String getName();
}

Now with pure Java, we have to implement the two methods in each class that
implements this interface, as in listing 8.33.

public class Entity implements Nameable {
 private String _name;

 public void setName(String name) {
 _name = name;
 }

 public String getName() {
 return _name;
 }
}

For a complex implementation, we can use a delegate object to perform the
actual work. In any case, we must add some nearly identical code in all imple-
menting classes.

Listing 8.32 Nameable.java: an interface for entities with a name

Listing 8.33 Entity.java: implementing the Nameable interface in a conventional way

Idioms 283
 With this idiom, we create an aspect that introduces the default implementa-
tion of the methods to the interface. Listing 8.34 shows the implementation of
the methods in the Nameable interface.

public interface Nameable {
 public void setName(String name);
 public String getName();

 static aspect Impl {
 private String Nameable._name;

 public void Nameable.setName(String name) {
 _name = name;
 }

 public String Nameable.getName() {
 return _name;
 }
 }
}

Now the classes implementing the Nameable interface no longer have to contain
these methods. Listing 8.35 shows the new version of Entity that works with the
Nameable interface in listing 8.34.

public class Entity implements Nameable {
}

Using pure Java, we could achieve a similar effect by creating a class, say, Default-
Nameable, that provides the default implementation, and then making Entity
extend that class. However, this approach works only when we are implementing a
single interface. Consider another interface, Identifiable, in listing 8.36.

public interface Identifiable {
 public void setId(String id);
 public String getId();
}

Listing 8.34 Nameable.java: with the default implementation

Listing 8.35 Entity.java: implementing the Nameable interface the AspectJ way

Listing 8.36 Identifiable.java: without any default implementation

284 CHAPTER 8
Design patterns and idioms
Now if Entity were to implement both Nameable and Identifiable without using
AspectJ, we would have to implement one of the interfaces and extend the
other’s default implementation. When we use the default interface idiom, all we
need to do is declare that the Entity class implements both the interfaces, and
we are done. As you can see in listing 8.37, the nested aspect inside Identifiable
is similar to the one in Nameable.

public interface Identifiable {
 public void setId(String id);
 public String getId();

 static aspect Impl {
 private String Identifiable._id;

 public void Identifiable.setId(String id) {
 _id = id;
 }

 public String Identifiable.getId() {
 return _id;
 }
 }
}

Now the Entity class simply implements both interfaces, as shown in listing 8.38.
The effect is the same as extending the default implementation for both (if mul-
tiple inheritance were allowed in Java).

public class Entity implements Nameable, Identifiable {
}

While the classes that implement these interfaces no longer have to implement
their methods, in some cases it is necessary to add some customization to the
methods. When such methods are directly implemented in classes, they override
the default implementation introduced by the aspect, just as you would expect.

 Another variation that you may use is to provide only a partial default imple-
mentation for an interface. For example, consider situations where the default
implementation needs information from the concrete classes or you want to force

Listing 8.37 Identifiable.java: with default implementation

Listing 8.38 Entity.java: implementing Nameable and Identifiable the AspectJ way

Summary 285
the implementing class’s developers to think about the right semantics on a cer-
tain method. In those cases, this idiom lets you implement as many methods as
appropriate in the interface, and lets the concrete classes implement the rest.

 This idiom not only saves you from writing code, it also facilitates making
changes. If you need to modify the default implementation, all you need to do is
change the Impl nested aspects

8.6 Summary

The existence of design patterns and idioms—knowledge in a condensed
form—reflects the maturity of programming methodologies and languages.
The patterns and idioms we introduced in this chapter are merely the begin-
ning; both AOP and AspectJ are new, and there are a lot more patterns waiting
to be discovered.

 When you encounter problems, knowing how to apply and reuse patterns will
help you solve them efficiently. Instead of thinking about each problem afresh,
you can determine whether one of the patterns will fit your problem.

 Once you get a good grasp of using patterns, you will see how combining
them can be even more effective in tackling complex problems. In the transac-
tion management system in chapter 11, for example, we use all four patterns—
worker object creation, wormhole, exception introduction, and participant—as
well as a few of the idioms.

 Experiment with these patterns, gain an understanding of them, and think
about places that you may be able to apply them. Such investment will pay off
later when you introduce aspects into a real system. Once you know these pat-
terns, instead of being surprised by the problem posed, you will probably
respond by saying, “Yes, I can use the <name-the-pattern> pattern.”

9Implementing
thread safety
This chapter covers AspectJ solutions for
■ Ensuring Swing's thread-safety rule
■ Improving responsiveness of UI applications
■ Implementing a reusable read-write lock pattern
286

Swing’s single-thread rule 287
Thread safety requires maintaining correct system behavior when multiple threads
are accessing the system state. Analyzing, implementing, testing, and debugging
this classic concern is difficult—especially since the code tends to be widely spread
throughout the system. Failing to maintain a high degree of diligence in modifying
any part can result in problems as simple as visual anomalies or in outright failures,
such as compromised data integrity and deadlocks. AspectJ can help you modular-
ize the implementation of this concern and thus simplify it.

 Some patterns are designed to facilitate the task of ensuring thread safety.
Instead of analyzing an ad hoc implementation, you start with proven ways to
address thread-safety problems. A pattern, for example, would specify when and
how to obtain locks on an object in order to avoid deadlocks, provide maximum
concurrency, and minimize overhead. Of course, each pattern suits a particular
kind of problem, and you must analyze your problem to choose the right pattern.

 In this chapter, we examine AspectJ-based solutions to thread-safety prob-
lems. We examine how AspectJ can modularize the implementation of two pat-
terns: a Swing-related pattern that involves routing all requests to protected
objects through a predefined thread and the read-write lock pattern.

9.1 Swing’s single-thread rule

Swing, currently the most popular Java GUI library, uses one of the simple thread-
safety patterns that requires accessing all the Swing components only through the
event-dispatching thread. By limiting the access to only one preassigned thread, the
pattern moves the issue of thread-safe access away from the components. When
another thread needs to access a Swing component, it must request the event-
dispatching thread to carry out the operation on its behalf instead of doing so itself.

 In chapter 6, we developed an AspectJ-based solution for catching the viola-
tions of Swing’s single-thread rule and logging the context under which they
occurred. Once you understand the violations by using the aspects, you can use
conventional solutions to fix them. However, fixing the violations in a conven-
tional way can be a daunting task that requires significant modifications in multi-
ple modules. In the first part of this chapter, we develop a way to fix the problem
automatically. We examine an AspectJ-based solution that enables you to introduce
thread safety simply by adding a couple of aspects to your system; no modifica-
tions to the core system are required. (This solution also provides a useful example
of the worker object creation pattern presented in chapter 8. In fact, I discovered
that pattern while trying to solve this very problem in an application I was work-
ing on.) Later in the chapter, we explore other ways you can use this pattern,

288 CHAPTER 9
Implementing thread safety
such as executing time-consuming tasks in separate threads to improve the
responsiveness of the user interface.

 To better understand the problem and the solutions, let’s go over the thread-
safety issues in Swing. If you are already familiar with the problem and solution
using EventQueue.invokeLater() and EventQueue.invokeAndWait(), you can skip
through the next few sections and go directly to section 9.4, which introduces an
AspectJ-based solution.

9.1.1 The rule

Swing’s single-thread rule states, “Once a Swing component has been realized,
all code that might affect or depend on the state of that component should be
executed in the event-dispatching thread” (see http://java.sun.com/docs/books/
tutorial/uiswing/overview/threads.html). The term realized in this context refers to
making a component visible. Once a component is visible, the event-dispatching
thread (sometimes called the AWT thread) is the only thread that can safely
access or update the state of the realized component. The rule exempts certain
methods, allowing them to be safely called from any thread. The important ones
are repaint(), revalidate(), and listener management methods.

 For the benefit of UI component developers, Swing decided to take the route
of permitting only single-thread access in order to reduce the burden of ensur-
ing thread safety individually.

9.1.2 The problem

In simple applications that do not use any user-created threads, single-thread access
is usually not a big concern. Since the components are updated in response to user
actions, which are called in the event-dispatching thread, the single-thread rule is
automatically observed. For example, you don’t have to worry about this rule when
you are deleting a row in JTable in direct response to a user pressing a button.

 In complex applications that need access to UI components from a nonevent-
dispatching thread, however, the single-threaded restriction becomes a problem.
A typical example is a thread performing network or I/O-intensive operations or
database-related activities. In such cases, these nonevent threads may need to
update the UI. For example, consider a situation where you need to update the
UI based on information from a server (a table’s contents in a database, for
instance). You make a request to the server, wait for a response, and then update the
UI based on that response. You most definitely don’t want the event-dispatching
thread to be blocked on the response, since doing so locks your whole GUI until
the server responds. A simple solution is to let some other thread wait for the

http://java.sun.com/docs/books/

Swing’s single-thread rule 289
server to respond and update the UI with the response obtained. Bingo! You just
encountered Swing’s single-thread rule problem. You are not supposed to update
any UI component in a nonevent-dispatching thread. If the thread waiting for
the server to respond updates the component while the AWT thread is repainting
the UI component, it may result in UI anomalies or even worse—a crash. The
same kind of problem would occur if you used a callback mechanism using RMI.
In that case, the callbacks would be invoked in RMI threads, and updating the
state of Swing components from the thread would lead to a violation of the thread-
safety rule. As with most multithreading-related problems, these problems are
hard to reproduce and therefore hard to fix. Murphy’s law seems to work well with
the single-thread rule: If you violate the single-thread rule, the problems always
seem to occur during the customer demo of your product!

9.1.3 The solution
To ensure safe access from a nonevent-dispatching thread, Swing allows a thread
to request that the event-dispatching thread carry out the operation on its
behalf. With this mechanism, the caller thread makes the request, while the event-
dispatching thread carries out the actual operation when processing the request.
By requiring that the component’s state be accessed and manipulated only from
a preassigned thread, and by providing a mechanism for passing the request to
the preassigned thread, Swing removes the burden of dealing with thread-safety
issues from the Swing component’s developers.

 Threads can pass requests to perform operations to an event-dispatching
thread through the use of EventQueue.invokeLater() or EventQueue.invokeAnd-
Wait(). (You will see the difference between both shortly.) With either, you pass a
Runnable object, and the run() method within it performs the intended opera-
tion. Such a solution requires writing a class extending Runnable for each method
that needs to be called from a nonAWT thread and using those classes instead of
direct calls. This has two problems:

■ Writing a class for each method is cumbersome.
■ You must ensure that the class, in combination with EventQueue, replaces

any call from the nonAWT thread.

The first limitation is an easier one to deal with—you could create a library of
such classes and use it for any of your projects. The second one is, however, not
trivial. It is not always easy to statically determine if the method call is being
made from a nonAWT thread. Missing a few such calls can lead to unexplainable
UI problems. Dynamically determining the callers’ thread ensures correct behav-

290 CHAPTER 9
Implementing thread safety
ior if employed consistently, but those checks and the routing logic result in
hard-to-read code.

9.2 A test problem

Let’s examine a test program (listing 9.1) that exhibits the multithread access
problem. We will use a test program that is similar to the one shown in chapter 6
(listing 6.7) and add a few more calls to illustrate specific issues. Later we will use
the same program to show how the conventional solution as well as the AspectJ
solution works.

import java.awt.*;
import javax.swing.*;
import javax.swing.table.*;

public class Test {
 public static void main(String[] args) {
 JFrame appFrame = new JFrame();
 appFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 DefaultTableModel tableModel = new DefaultTableModel(4,2);
 JTable table = new JTable(tableModel);

 appFrame.getContentPane().add(table);

 appFrame.pack();
 appFrame.setVisible(true);

 String value = "[0,0]";

 tableModel.setValueAt(value, 0, 0);

 JOptionPane.showMessageDialog(appFrame,
 "Press OK to continue");

 int rowCount = tableModel.getRowCount();
 System.out.println("Row count = " + rowCount);

 Color gridColor = table.getGridColor();
 System.out.println("Grid color = " + gridColor);
 }
}

Listing 9.1 A test program showing incorrect usage of the UI update call

Updating
the UI

 b

Requesting
user input

 c

Accessing
the return
value

 d

A test problem 291
The last four UI accesses in this program are made from the main thread. To cor-
rect this situation, we need to route such calls through the event-dispatching thread.
Although we are making these calls in the main thread itself, in real situations such
calls will typically occur from some other user thread. For example, it could be a
user thread performing some complex task or a callback from an RMI thread.
The call to set the value of a cell will ultimately result in updating the table com-
ponent. This call can typically be invoked asynchronously—the caller does not
have to wait until the execution is carried out, since showing the new values
won’t occur until the AWT thread repaints the table. Such asynchronous calls are
also called nonblocking operations.
The call to show a message must be made synchronously—the caller must wait
until the call has completed the execution, which means after the user has seen
and dismissed the message. Such operations are also called blocking operations.
These calls also must wait before returning to the caller—for the return value of
getRowCount() and getGridColor() to make any sense, the call must execute first.

Let’s write a simple aspect to monitor UI access calls and the thread executing
them (listing 9.2).

import java.awt.EventQueue;

public aspect LogUIActivitiesAspect {
 pointcut uiActivities()
 : call(* javax..*+.*(..));

 before() : uiActivities() {
 System.out.println("Executing:\n\t"
 + thisJoinPointStaticPart.getSignature()
 + "\n\t"
 + Thread.currentThread() + "\n");
 }
}

In the logging aspect, we simply log all the calls to any method in any class in the
javax package and any of its subpackages. The before advice prints the method
signature and the caller thread using Thread.currentThread().

 When we compile1 and run the Test class with the logging aspect, we get out-
put similar to the following:

 b

 c

 d

Listing 9.2 LogUIActivitiesAspect.java

1 You need to use the -1.4 flag to the ajc compiler to get the setVisible() calls logged. This is a result
of the interaction between the byte code produced by pre-1.4 compilers and the AspectJ weaver.

292 CHAPTER 9
Implementing thread safety
> ajc –1.4 *.java
> java Test
Executing:
 void javax.swing.JFrame.setDefaultCloseOperation(int)
 Thread[main,5,main]

Executing:
 Container javax.swing.JFrame.getContentPane()
 Thread[main,5,main]

Executing:
 void javax.swing.JFrame.pack()
 Thread[main,5,main]

Executing:
 void javax.swing.JFrame.setVisible(boolean)
 Thread[main,5,main]

Executing:
 void javax.swing.table.DefaultTableModel.setValueAt(Object,
 int, int)
 Thread[main,5,main]

Executing:
 void javax.swing.JOptionPane.showMessageDialog(Component,
 Object)
 Thread[main,5,main]

Executing:
 int javax.swing.table.DefaultTableModel.getRowCount()
 Thread[main,5,main]

Row count = 4
Executing:
 Color javax.swing.JTable.getGridColor()
 Thread[main,5,main]

Grid color = javax.swing.plaf.ColorUIResource[r=153,g=153,b=153]

The output shows that all the calls are made in the main thread. The calls made
in the main thread after the call to setVisible() are in violation of the single-
thread rule. The correct usage requires them to be executed only in the event-
dispatching thread.

 Now that we have a simple illustrative program showing the problem, let’s see
how to solve it using the conventional solution.

➥

➥

Solution: the conventional way 293
9.3 Solution: the conventional way

Before we discuss the AspectJ solution, let’s look at an implementation of a con-
ventional solution; this will help you to see the complexity of such a solution and
how thread safety is a crosscutting concern. You will also understand the behav-
ior expected from an AspectJ-based solution; ultimately, we want both solutions
to be behaviorally identical.

 While this section may seem rather long, and you may be eager to see the
AspectJ-based solution, be patient and work along with me. This provides the
background you need to create the AspectJ-based solution, and unless you are
already intimately familiar with the conventional solution, you will need a firm
grasp of these concepts. You’ll also probably gain a greater appreciation for the
AspectJ-based solution.

 In our implementation (listing 9.3), we wrap each method call made after
realizing the frame in anonymous Runnable classes, also known as routing classes.
The class’s run() method simply calls the intended operation. Although we used
anonymous classes here, you could very well use named classes similar to the
ones we developed in listings 6.8 and 6.9 when we were illustrating policy
enforcement. We then call either EventQueue.invokeLater() or EventQueue.
invokeAndWait() and pass an instance of the routing class. For calls that can be
performed in a nonblocking manner, we use invokeLater(), whereas for calls
that must block the caller, we use invokeAndWait().

import java.awt.*;
import javax.swing.*;
import javax.swing.table.*;

public class Test {
 public static void main(String[] args) {
 final JFrame appFrame = new JFrame();
 appFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 final DefaultTableModel tableModel = new DefaultTableModel(4,2);
 final JTable table = new JTable(tableModel);

 appFrame.getContentPane().add(table);

 appFrame.pack();
 appFrame.setVisible(true);
 final String value = "[0,0]";
 EventQueue.invokeLater(new Runnable() {

Listing 9.3 Test.java: the conventional implementation

The trigger point for
the single-thread rule b

 c

294 CHAPTER 9
Implementing thread safety
 public void run() {
 tableModel.setValueAt(value, 0, 0);
 }
 });

 try {
 EventQueue.invokeAndWait(new Runnable() {
 public void run() {
 JOptionPane.
 showMessageDialog(appFrame,
 "Press OK to continue");
 }
 });
 } catch (Exception ex) {
 // ignore...
 }

 final int[] rowCountValueArray = new int[1];
 try {
 EventQueue.invokeAndWait(new Runnable() {
 public void run() {
 rowCountValueArray[0] = tableModel.getRowCount();
 }
 });
 } catch (Exception ex) {
 // ignore...
 }
 int rowCount = rowCountValueArray[0];

 System.out.println("Row count = " + rowCount);

 final Color[] gridColorValueArray = new Color[1];
 try {
 EventQueue.invokeAndWait(new Runnable() {
 public void run() {
 gridColorValueArray[0] = table.getGridColor();
 }
 });
 } catch (Exception ex) {
 // ignore...
 }
 Color gridColor = gridColorValueArray[0];

 System.out.println("Grid color = " + gridColor);
 }
}

In listing 9.3, we routed all the calls that access or update the UI components’
state by posting a request in EventQueue. Let’s look at the code in more detail:

 c Asynchronous
routing

Synchronous
routing to

get user
input d

Synchronous
routing to get
the primitive
return value e

Synchronous
routing to get

the object’s
return value f

Solution: the conventional way 295
This is the point where the UI is realized—the frame is shown on the screen. It is
okay to call UI methods in a nonevent-dispatching thread before this point.
Since the AWT thread is not accessing the components, the main thread is the
only thread updating the UI component’s state.

 Once the UI is on the screen, the AWT thread will read and update the state.
For example, it may invoke an operation to get the row count of table widget to
paint the table components. Because the AWT thread is accessing the state and
because Swing classes do not provide any exclusive access protection, we must
request that the event-dispatching thread perform the operation on behalf of the
calling thread. With this policy, we ensure that the event-dispatching thread is
the only thread managing UI components.
The call to set the value of a particular cell in the table can be made asynchro-
nously since there is no inherent requirement to wait for completion of this opera-
tion. We first wrap our request in an anonymous class implementing Runnable. In
the run() method, we simply carry out the original operation. Note that we
marked several local variables (such as tableModel) as final. This is necessary
because Java enforces that the variables accessed in local classes be declared final.

 Since synchronous execution is not a requirement, we use EventQueue.invoke-
Later() to send our request to perform these operations. This results in the
request being added to the event-dispatch queue. The event-dispatching thread
will eventually pick the request object and call its run() method, thus carrying
out the operation.
The call to JOptionPane.showMessageDialog() has an inherent requirement to be
executed synchronously with the caller—the caller must not proceed with the
next operation until the call is executed. Consider a scenario where your pro-
gram flow depends on the user’s input, such as clicking on a Yes or No button in
a message dialog box. This means you must show the dialog box, wait for the
user response, and only then proceed further based on the input. Even in cases
where the dialog box serves a notification purpose, as in our case, you still need
to show the dialog box and proceed only after the user has seen and dismissed it.

 To fulfill the blocking requirement on the operation, we use EventQueue.
invokeAndWait() to send our request. The request is added to the event-dispatch
queue, and the caller will be blocked pending the execution of the request object.
Eventually the event-dispatching thread will pick up the request, execute it, and
unblock the caller. In our case, the execution in the main() method will be
blocked until the message box is shown to the user and the user clicks the OK
button or closes the message box.
When a return value is expected from a method call, the operation must run syn-
chronously with the caller. The next operation may depend on the return value,

 b

 c

 d

 e

296 CHAPTER 9
Implementing thread safety
so there is no point in proceeding without obtaining the return value by execut-
ing the operation.

 Just as in the earlier call, we use invokeAndWait() to synchronously request
that the event-dispatching thread execute the operation and block the caller
until it is finished. We now focus on how to communicate the return value from
the worker object to the caller. Since the variables accessed from local classes
must be final, we cannot just assign the result of getRowCount() to the rowCount
variable.2 We need to go through the hoops of creating an integer array of
length one, marking it final, assigning the element in it to the return value of
getRowCount(), and finally assigning that element to rowCount. So much for get-
ting a return value!

 If we used named classes, we still would have to consider the return value, typi-
cally by adding an additional member to the class to store the return value.
The call to getGridColor() has an identical issue, except that the return value in
this case is not a primitive.

We have not handled the exceptions in this example, in order to limit further
complexity in the already complex code. In most implementations, you will need
to deal with exceptions in a certain way. Toward the end of the chapter, we show
how you can deal with exceptions with our AspectJ-based solution (where both
the base solution as well as the exception-handling task are vastly simpler).

 Another point to note is that we could have simply called all the methods
after the frame was realized in a single worker object. It certainly would have
worked here. Nevertheless, to mimic the real programming problem where a dif-
ferent individual or a group of calls may be made from different parts of a pro-
gram, we deal with each operation independently. Further, this grouping of
methods requires altering the exception-handling policy; you now need to
address exceptions thrown by any of the called methods together instead of deal-
ing with them separately.

 When we compile the previous class along with the logging aspect and run it,
we get the following output:

> ajc –1.4 *.java
> java Test

2 You cannot use a blank final variable (the final variable that does not have an assigned value) for this
purpose to defer the assignment to an inner class’s method. The Java Language Specification (section 8.1.2)
requires that “Any local variable, formal method parameter or exception handler parameter used but
not declared in an inner class must be declared final, and must be definitely assigned before the body
of the inner class.”

 f

Solution: the AspectJ way 297
Executing:
 void javax.swing.JFrame.setDefaultCloseOperation(int)
 Thread[main,5,main]

Executing:
 Container javax.swing.JFrame.getContentPane()
 Thread[main,5,main]

Executing:
 void javax.swing.JFrame.pack()
 Thread[main,5,main]

Executing:
 void javax.swing.JFrame.setVisible(boolean)
 Thread[main,5,main]

Executing:
 void javax.swing.table.DefaultTableModel.setValueAt(Object,
 int, int)
 Thread[AWT-EventQueue-0,6,main]

Executing:
 void javax.swing.JOptionPane.showMessageDialog(Component,
 Object)
 Thread[AWT-EventQueue-0,6,main]

Executing:
 int javax.swing.table.DefaultTableModel.getRowCount()
 Thread[AWT-EventQueue-0,6,main]

Row count = 4
Executing:
 Color javax.swing.JTable.getGridColor()
 Thread[AWT-EventQueue-0,6,main]

Grid color = javax.swing.plaf.ColorUIResource[r=153,g=153,b=153]

As you can see, our hard work has paid off. All the calls made after making the
frame visible are indeed called in the event-dispatching thread (note the thread
ID printed in the log). We no longer violate Swing’s single-thread rule. However,
the complexity of the program is overwhelming.

9.4 Solution: the AspectJ way

To summarize the conventional solution that ensures adherence to Swing’s single-
thread rule, we need two kinds of modifications:

1 Implement execution classes that encapsulate the UI operations and cre-
ate worker objects from those classes rather than making the direct calls.

➥

➥

298 CHAPTER 9
Implementing thread safety
2 Pass the worker object to EventQueue.invokeLater() or EventQueue.invoke-
AndWait(). When we must have access to the return values of invoked
synchronous operations, we also need a mechanism for transferring the
return value from the run() method to the caller of EventQueue.invoke-
AndWait().

In this section, we create a basic AspectJ-based solution that avoids violating the
single-thread rule. We will then improve upon this solution in a later section.

 The key element of our solution is to use the worker object creation pattern
explained in chapter 8. We capture calls to all the required methods, use the pat-
tern to create a new Runnable object, and hand over the object to the event queue
for execution. Before releasing the object to the queue, we also check whether
the caller thread is already the event-dispatching thread; in that case, we let the
original method execute directly.

 With the AspectJ-based solution, we will implement Swing’s single-thread rule
without making any change to the Test class in listing 9.1. This aspect will auto-
matically route any method call that accesses or modifies a Swing component’s
state through the event-dispatching thread.

 In this section, we implement multiple versions of the solution, with each new
solution building on the prior version. Note that each version of the solution
uses the original Test program from listing 9.1 and also uses the LogUIActivities-
Aspect from listing 9.2 to log the execution of the UI operations.

 Each version consists of an abstract aspect that is implemented in a concrete
aspect. While we could have implemented just one concrete aspect in each case,
this refactoring offers flexibility that can be quite important when you use the
solutions in your system. For instance, you can include the abstract aspect in your
system unaltered and then write a simple subaspect, similar to the ones we show,
to handle your system-specific requirements. In section 9.5 we will examine the
kinds of customization you may need. Besides making the final solution easy to
understand, this step-by-step approach will suggest a typical way you might want
to develop an AspectJ-based solution to tackle new problems—start simple and
handle more issues as you progress.

9.4.1 The first version

In the first version of our solution, we route all the calls through EventQueue.
invokeAndWait(). With this arrangement, the caller will be blocked until the
event-dispatching thread executes the operation. In practice, blocking the caller
is often undesirable and should be limited to situations that warrant its usage.

Solution: the AspectJ way 299
The implementation, however, does provide a simple solution to ensure compli-
ance with Swing’s single-thread rule. Later we will improve on this solution. Note
that we use the RunnableWithReturn class developed in chapter 8 in our solution.
Listing 9.4 shows the base abstract aspect that routes all join points captured by
the uiMethodCalls() pointcut synchronously.

import java.awt.*;
import java.util.*;
import javax.swing.*;

import pattern.worker.*;

public abstract aspect SwingThreadSafetyAspect {
 abstract pointcut uiMethodCalls();

 pointcut threadSafeCalls()
 : call(void JComponent.revalidate())
 || call(void JComponent.repaint(..))
 || call(void add*Listener(EventListener))
 || call(void remove*Listener(EventListener));

 pointcut excludedJoinpoints()
 : threadSafeCalls()
 || within(SwingThreadSafetyAspect)
 || if(EventQueue.isDispatchThread());

 pointcut routedMethods()
 : uiMethodCalls() && !excludedJoinpoints();

 Object around() : routedMethods() {
 RunnableWithReturn worker = new RunnableWithReturn() {
 public void run() {
 _returnValue = proceed();
 }};

 try {
 EventQueue.invokeAndWait(worker);
 } catch (Exception ex) {
 // ... log exception
 return null;
 }
 return worker.getReturnValue();
 }
}

Listing 9.4 The base swing thread-safety aspect: First version

Pointcut capturing
UI method calls

 b

Pointcut
capturing
exempted calls

 c

Pointcut
capturing all
excluded join
points

 d

Methods that
need routing

 e

Advice
routing
the calls

 f

300 CHAPTER 9
Implementing thread safety
This abstract aspect provides the basic functionality of routing all the required
calls through EventQueue.invokeAndWait() using the worker object creation pat-
tern. Let’s study the implementation in detail:

The aspect declares one pointcut, uiMethodCalls(), as an abstract pointcut. The
concrete subaspects must provide a definition for this pointcut that captures all
the calls accessing or affecting the Swing components.
The threadSafeCalls() pointcut lists the calls to all the methods exempted from
the single-thread rule—calls to JComponent.repaint(), JComponent.revalidate(),
and methods for adding and removing listeners.
For the excludedJoinpoints() pointcut, we combine the threadSafeCalls()
pointcut with the pointcut capturing all the join points in the aspect itself and
those executed in the event-dispatching thread. The latter is achieved by using
if(EventQueue.isDispatchThread()). The EventQueue.isDispatchThread() method
returns true only if the current execution thread is the event-dispatching thread.
We combine the uiMethodCalls() pointcut with the negation of excludedJoin-
points() to capture the join points that need routing of the calls through the
event-dispatching thread.
In the advice body, we call EventQueue.invokeAndWait() with an anonymous class
extending the RunnableWithReturn class. In the run() method, we simply call
proceed() to carry out the original operation. The task that this anonymous class
performs is similar to the tasks of the classes in listings 6.8 and 6.9 in chapter 6.
The invokeAndWait() method makes the request and is blocked until the event-
dispatching thread executes the run() method. The event-dispatching thread
eventually calls the run() method, resulting in the invocation of the original call,
and then unblocks the caller thread. The advice itself assigns the return value of
the proceed() statement to the _returnValue member of the worker object. It
later obtains this return value by calling the getReturnValue() method on the
worker object. This return value management is a result of directly applying the
worker object creation pattern discussed in chapter 8.

The invokeAndWait() method can throw InterruptedException and Invocation-
TargetException. For now, we will ignore the exceptions and revisit this issue
toward the end of this chapter.

 Now that we have the base aspect taking care of all the details, let’s create a
subaspect that extends it. The DefaultSwingThreadSafetyAspect subaspect
defines the uiMethodCalls() pointcut, which collects all methods in Swing com-
ponents. It captures calls to all methods in all of JComponent’s direct or indirect
subclasses; it also captures calls to all methods in all model classes and their sub-

 b

 c

 d

 e

 f

Solution: the AspectJ way 301
classes. Notice that the pointcut definition is identical to that defined in listing 6.10
(which we developed while creating the policy-enforcement aspect). Listing 9.5
shows the DefaultSwingThreadSafetyAspect implementation.

public aspect DefaultSwingThreadSafetyAspect
 extends SwingThreadSafetyAspect {
 pointcut viewMethodCalls()
 : call(* javax..JComponent+.*(..));

 pointcut modelMethodCalls()
 : call(* javax..*Model+.*(..))
 || call(* javax.swing.text.Document+.*(..));

 pointcut uiMethodCalls()
 : viewMethodCalls() || modelMethodCalls();
}

The subaspect in listing 9.5 is all you need to ensure adherence to Swing’s single-
thread rule as long as all your UI components are based on Swing’s components
and models. If you have additional custom components that do not use any of
the standard Swing models as a base class, all you need to do is write a subaspect
similar to the one in listing 9.5 with a defined pointcut corresponding to all the
update methods in your classes. You may want to consider writing the subaspect
as a nested subaspect of the classes, which makes it easy to modify the nested
aspect when the implementation of the enclosing class changes. For details of
the participant pattern, see chapter 8.

 Seeing is believing. To see that the calls are indeed routed as intended, we
need an additional logging aspect that prints a log message before executing any
UI operation in the control flow of RunnableWithReturn.run(). Listing 9.6 shows
LogRoutingDetailsAspect, which implements such logging.

import pattern.worker.*;

public aspect LogRoutingDetailsAspect {
 pointcut syncRoutingExecution()
 : cflow(execution(* RunnableWithReturn.run()));

 before() : LogUIActivitiesAspect.uiActivities()

Listing 9.5 The subaspect

Listing 9.6 LogRoutingDetailsAspect.java

Calls to UI
component methods

Calls to UI
model
methods

Calls to UI
methods

302 CHAPTER 9
Implementing thread safety
 && syncRoutingExecution() {
 System.out.println("Executing operation synchronously");
 }
}

Since advice in all three aspects—DefaultSwingThreadSafetyAspect, LogRouting-
DetailsAspect, and LogUIActivitiesAspect—share common join points, we
need to control their precedence. We would like the advice in DefaultSwingThread-
SafetyAspect to apply first so that the routing takes place prior to any logging.
We also would like LogRoutingDetailsAspect’s advice to apply before that of
LogUIActivitiesAspect so that we can see how the calls will be routed before they
are executed. PrecedenceControlAspect (listing 9.7) enforces the required prece-
dence control.

public aspect PrecedenceControlAspect {
 declare precedence:
 DefaultSwingThreadSafetyAspect,
 LogRoutingDetailsAspect,
 LogUIActivitiesAspect;
}

The aspect in listing 9.7 declares that DefaultSwingThreadSafetyAspect has the
highest precedence and that LogUIActivitiesAspect has the lowest precedence.
Refer to chapter 4, section 4.2, for more details on aspect-precedence control.

 Let’s continue to use the test program from listing 9.1. When we compile all
the classes and aspects, and run the test program, we get output similar to this:

> ajc -1.4 *.java pattern\worker*.java
> java Test
Executing:
 void javax.swing.JFrame.setDefaultCloseOperation(int)
 Thread[main,5,main]

Executing:
 Container javax.swing.JFrame.getContentPane()
 Thread[main,5,main]

Executing:
 void javax.swing.JFrame.pack()
 Thread[main,5,main]

Listing 9.7 PrecedenceControlAspect.java

Solution: the AspectJ way 303
Executing:
 void javax.swing.JFrame.setVisible(boolean)
 Thread[main,5,main]

Executing operation synchronously
Executing:
 void javax.swing.table.DefaultTableModel.setValueAt(Object,
 int, int)
 Thread[AWT-EventQueue-0,6,main]

Executing operation synchronously
Executing:
 void javax.swing.JOptionPane.showMessageDialog(Component,
 Object)
 Thread[AWT-EventQueue-0,6,main]

Executing operation synchronously
Executing:
 int javax.swing.table.DefaultTableModel.getRowCount()
 Thread[AWT-EventQueue-0,6,main]

Row count = 4
Executing operation synchronously
Executing:
 Color javax.swing.JTable.getGridColor()
 Thread[AWT-EventQueue-0,6,main]

Grid color = javax.swing.plaf.ColorUIResource[r=153,g=153,b=153]

We can see from the output that all UI operations are indeed executed in the
event-dispatching thread. Further, all calls are executed in the control flow of
RunnableWithReturn.run() synchronously with the caller. The return values
printed are correct too—for both primitive and object return types.

 This first version of the solution enabled us to adhere to the Swing’s single-
thread rule, and we did not have to touch any of the core classes. Further, the use
of a worker object creation pattern helped us save the ton of code it would have
taken to create a class to encapsulate each individual operation.

 Our solution, however, has the shortcoming of routing all the calls through
EventQueue.invokeAndWait(), causing the caller to be blocked until the AWT
thread picks up the request and executes it. In the next section, we address
this shortcoming.

9.4.2 The second version

The central idea behind the second version is to detect the need to route a
method synchronously or asynchronously based on its return type. If the method

➥

➥

304 CHAPTER 9
Implementing thread safety
is returning a non-void type, we must execute the method synchronously. To
obtain the return value of such an operation, we need to execute the operation
and not merely put it into the event-processing queue. For these calls, we must
use EventQueue.invokeAndWait(), and we will use ReturnWithRunnable as the base
class for the execution class, just as we did in the first version. For the other oper-
ations, we assume that it is fine to invoke those operations asynchronously. For
those calls, we use EventQueue.invokeLater(), and we will use Runnable as the
base interface for the execution class.

 Listing 9.8 shows the second version of the SwingThreadSafetyAspect base
aspect, which routes methods synchronously or asynchronously based on the
return type of the method.

import java.awt.*;
import java.util.*;
import javax.swing.*;

import pattern.worker.*;

public abstract aspect SwingThreadSafetyAspect {
 abstract pointcut uiMethodCalls();

 pointcut threadSafeCalls()
 : call(void JComponent.revalidate())
 || call(void JComponent.repaint(..))
 || call(void add*Listener(EventListener))
 || call(void remove*Listener(EventListener));

 pointcut excludedJoinpoints()
 : threadSafeCalls()
 || within(SwingThreadSafetyAspect)
 || if(EventQueue.isDispatchThread());

 pointcut routedMethods()
 : uiMethodCalls() && !excludedJoinpoints();
 pointcut voidReturnValueCalls()
 : call(void *.*(..));

 Object around()
 : routedMethods() && !voidReturnValueCalls() {
 RunnableWithReturn worker = new RunnableWithReturn() {
 public void run() {
 _returnValue = proceed();
 }};

 try {

Listing 9.8 The base swing thread-safety aspect: second version

Unchanged
portion from
listing 9.4

 b

Captures methods
returning void

 c

 d

Solution: the AspectJ way 305
 EventQueue.invokeAndWait(worker);
 } catch (Exception ex) {
 // ... log exception
 return null;
 }
 return worker.getReturnValue();
 }

 void around()
 : routedMethods() && voidReturnValueCalls() {
 Runnable worker = new Runnable() {
 public void run() {
 proceed();
 }};

 EventQueue.invokeLater(worker);
 }
}

The uiMethodCalls(), threadSafeCalls(), excludedJoinpoints(), and routed-
Methods() pointcuts remain unchanged from those in listing 9.4.
We define the voidReturnValueCalls() pointcut to capture all the methods that
do not return a value.
We modify the advice that causes synchronous execution in the first version. We
want it to apply only to the join points that return a value, so we combine rout-
edMethods() with the negation of the voidReturnValueCalls() pointcut. Except
for this change, the body of the advice remains unchanged from the first version.
We add new advice to cause asynchronous execution of calls that do not return a
value. We identify the join points needing this advice by combining the routed-
Methods() pointcut with the voidReturnValueCalls() pointcut. The advice body
is similar to the synchronous routing advice shown in the previous code section.
We use Runnable instead of RunnableWithReturn to implement the execution
class, because we no longer need to consider the return value. To cause asynchro-
nous execution, we use EventQueue.invokeLater() instead of EventQueue.invoke-
AndWait(). Since EventQueue.invokeLater() does not throw any checked exception,
we do not need the exception-handling logic in this advice.

The subaspect in listing 9.5 (which simply provides the definition for a pointcut
corresponding to all UI operations) continues to work fine with this aspect.

 Before we check how our solution works, let’s include additional advice in the
LogRoutingDetailsAspect aspect (listing 9.9) to differentiate between synchro-
nously and asynchronously invoked calls.

Synchronously
routes all
routed
methods with
the non-void
return type

 d

Asynchronously
executes the
other routed
methods

 e

 b

 c

 d

 e

306 CHAPTER 9
Implementing thread safety
import pattern.worker.*;

public aspect LogRoutingDetailsAspect {
 pointcut syncRoutingExecution()
 : cflow(execution(* RunnableWithReturn.run()));

 before() : LogUIActivitiesAspect.uiActivities()
 && syncRoutingExecution() {
 System.out.println("Executing operation synchronously");
 }

 pointcut asyncRoutingExecution()
 : cflow(execution(* Runnable.run()))
 && !syncRoutingExecution();

 before() : LogUIActivitiesAspect.uiActivities()
 && asyncRoutingExecution() {
 System.out.println("Executing operation asynchronously");
 }
}

This addition to the aspect simply logs any calls in the uiActivities() pointcut
that are carried out in the Runnable.run() method’s control flow but that are not
in the RunnableWithReturn.run() method’s control flow.

 Let’s see how our solution fares. When we compile all the classes and aspects
and run the test program, we get output similar to this:

> ajc -1.4 *.java pattern\worker*.java
> java Test
Executing:
 void javax.swing.JFrame.setDefaultCloseOperation(int)
 Thread[main,5,main]

Executing:
 Container javax.swing.JFrame.getContentPane()
 Thread[main,5,main]

Executing:
 void javax.swing.JFrame.pack()
 Thread[main,5,main]

Executing:
 void javax.swing.JFrame.setVisible(boolean)
 Thread[main,5,main]

Listing 9.9 LogRoutingDetailsAspect

Solution: the AspectJ way 307
Executing operation asynchronously
Executing:
 void javax.swing.table.DefaultTableModel.setValueAt(Object,
 int, int)
 Thread[AWT-EventQueue-0,6,main]

Executing operation asynchronously
Executing:
 void javax.swing.JOptionPane.showMessageDialog(Component,
 Object)
 Thread[AWT-EventQueue-0,6,main]

Executing operation synchronously
Executing:
 int javax.swing.table.DefaultTableModel.getRowCount()
 Thread[AWT-EventQueue-0,6,main]

Row count = 4
Executing operation synchronously
Executing:
 Color javax.swing.JTable.getGridColor()
 Thread[AWT-EventQueue-0,6,main]

Grid color = javax.swing.plaf.ColorUIResource[r=153,g=153,b=153]

The output shows that the call to setValueAt(), which was invoked synchro-
nously using the earlier version of the solution, is now being invoked asynchro-
nously. This is what we expected, since it does not return any value. However,
note how JOptionPane.showMessageDialog() is also invoked asynchronously. This
is not the correct behavior; it needs to wait until the user has dismissed the mes-
sage dialog box before continuing. This is because JOptionPane.showMessage-
Dialog() declares that it will return void, and therefore our aspect routed it
asynchronously. If we had invoked other JOptionPane methods—such as show-
ConfirmDialog(), which returns a non-void return type—we would get synchro-
nous execution without needing any further modifications. If you ran the
program yourself, you would see that getRowCount() and getGridColor() are
executed even before you close the message dialog box.

 As you can see, our modified solution, taking its cue from the return value
type, addresses most needs but behaves incorrectly in certain cases. Let’s fix that.

9.4.3 The third version

The idea behind the third version is to let subaspects have explicit control over
methods that require synchronous routing. We will capture such methods in a
pointcut irrespective of their return value type. This way, methods such as JOp-
tionPane.showMessageDialog() that return void can still be routed synchro-

➥

➥

308 CHAPTER 9
Implementing thread safety
nously. Listing 9.10 shows an aspect that explicitly specifies the methods that
must be routed synchronously.

import java.awt.*;
import java.util.*;
import javax.swing.*;

import pattern.worker.*;

public abstract aspect SwingThreadSafetyAspect {
 abstract pointcut uiMethodCalls();

 abstract pointcut uiSyncMethodCalls();

 pointcut threadSafeCalls()
 : call(void JComponent.revalidate())
 || call(void JComponent.repaint(..))
 || call(void add*Listener(EventListener))
 || call(void remove*Listener(EventListener));

 pointcut excludedJoinpoints()
 : threadSafeCalls()
 || within(SwingThreadSafetyAspect)
 || if(EventQueue.isDispatchThread());

 pointcut routedMethods()
 : uiMethodCalls() && !excludedJoinpoints();

 pointcut voidReturnValueCalls()
 : call(void *.*(..));
 void around()
 : routedMethods() && voidReturnValueCalls()
 && !uiSyncMethodCalls() {
 Runnable worker = new Runnable() {
 public void run() {
 proceed();
 }};

 EventQueue.invokeLater(worker);
 }

 Object around()
 : routedMethods()
 && (!voidReturnValueCalls() || uiSyncMethodCalls()) {
 RunnableWithReturn worker = new RunnableWithReturn() {
 public void run() {
 _returnValue = proceed();
 }};

Listing 9.10 The base swing thread-safety aspect: third version

Captures methods needing
synchronous execution

 b

Unchanged
code from
listings 9.4
and 9.8

 c

Ensures no
asynchronous execution
of methods needing
synchronous execution

 d

 e

Solution: the AspectJ way 309
 try {
 EventQueue.invokeAndWait(worker);
 } catch (Exception ex) {
 // ... log exception
 return null;
 }
 return worker.getReturnValue();
 }
}

We add a new abstract pointcut, uiSyncMethodCalls(), to let subaspects define
methods that they wish to route synchronously.
The various pointcuts remain unchanged from the aspect in our first version
(which we also carried through to the second version).
We must ensure that all methods captured by the uiSyncMethodCalls() point-
cut—even those with the void return type—are not advised to execute asynchro-
nously. We do this by combining the negated uiSyncMethodCalls() pointcut with
the routedMethod() and voidReturnValueCalls() pointcuts. The advice body
itself is unchanged from listing 9.8.
We use the uiSyncMethodCalls() pointcut to apply synchronous routing advice to
the join points that are captured by the pointcut. This ensures synchronous rout-
ing of methods returning a non-void return value by advising the !voidReturn-
ValueCalls() pointcut in addition to the uiSyncMethodCalls() pointcut.

 We need to modify the subaspect to add a definition for uiSyncMethodCalls().
Listing 9.11 shows a modified version of DefaultSwingThreadSafetyAspect that
explicitly specifies the methods needing synchronous routing.

public aspect DefaultSwingThreadSafetyAspect
 extends SwingThreadSafetyAspect {
 pointcut viewMethodCalls()
 : call(* javax..JComponent+.*(..));

 pointcut modelMethodCalls()
 : call(* javax..*Model+.*(..))
 || call(* javax.swing.text.Document+.*(..));

 pointcut uiMethodCalls()
 : viewMethodCalls() || modelMethodCalls();

 pointcut uiSyncMethodCalls() :
 call(* javax..JOptionPane+.*(..))
 /* || ... */;
}

Ensures
synchronous
execution of

methods
needing

synchronous
execution

 e

 b

 c

 d

 e

Listing 9.11 A subaspect that lists synchronous execution join points explicitly

310 CHAPTER 9
Implementing thread safety
The aspect in listing 9.11 simply defines uiSyncMethodCalls() to capture all the
calls to any method in JOptionPane or its subclasses. You can modify the point-
cut definition to add other join points that you wish to run synchronously with
the caller.

 When we run the test program, we see that the message dialog box appears
before getRowCount() and getGridColor() are invoked:

> ajc -1.4 *.java pattern\worker*.java
> java Test
Executing:
 void javax.swing.JFrame.setDefaultCloseOperation(int)
 Thread[main,5,main]

Executing:
 Container javax.swing.JFrame.getContentPane()
 Thread[main,5,main]

Executing:
 void javax.swing.JFrame.pack()
 Thread[main,5,main]

Executing:
 void javax.swing.JFrame.setVisible(boolean)
 Thread[main,5,main]

Executing operation asynchronously
Executing:
 void javax.swing.table.DefaultTableModel.setValueAt(Object,
 int, int)
 Thread[AWT-EventQueue-0,6,main]

Executing operation synchronously
Executing:
 void javax.swing.JOptionPane.showMessageDialog(Component,
 Object)
 Thread[AWT-EventQueue-0,6,main]

Executing operation synchronously
Executing:
 int javax.swing.table.DefaultTableModel.getRowCount()
 Thread[AWT-EventQueue-0,6,main]

Row count = 4
Executing operation synchronously
Executing:
 Color javax.swing.JTable.getGridColor()
 Thread[AWT-EventQueue-0,6,main]

Grid color = javax.swing.plaf.ColorUIResource[r=153,g=153,b=153]

➥

➥

Improving the solution 311
The output is nearly identical to that for the conventional solution. The only dif-
ference is the additional log statement for monitoring synchronous versus asyn-
chronous execution.

 We now have a complete solution that implements Swing’s single-thread rule
without requiring any modification to the core classes. If you have adopted AspectJ
fully, you can actually use AspectJ to fix the problems instead of only detecting the
problems (as suggested in chapter 6). The result is guaranteed compliance with
the threading rule without the need to make system-wide modifications.

9.5 Improving the solution

In this section, we discuss a few enhancements to our previous solution, such as
handling exceptions and optimizing the solution using system-specific knowledge.

9.5.1 Dealing with exceptions
Exception handling poses an interesting challenge when the exceptions are
thrown by asynchronously routed calls. For example, if you route a call asynchro-
nously using EventQueue.invokeLater(), since the caller isn’t going to wait for the
execution to be complete, it does not have access to the exceptions thrown. Fur-
ther, exceptions are thrown in the control flow of the AWT thread and not the
caller thread. A reasonable strategy to deal with these exceptions is to set a listener
that will be notified if the operation fails. Let’s look at the modification we need to
make in the first around advice of the final version of the SwingThreadSafety-
Aspect aspect. All we need to do is surround the proceed() statement with a try/
catch block, as shown in the following snippet. In the catch block, you can perform
any operations you need to do in order to match your exception-handling policy
(such as logging it or passing it to an exception listener object). You may also
rethrow the exception after wrapping the caught exception in a RuntimeException.
See chapter 8 for more details on dealing with exceptions in these cases:

void around()
 : routedMethods() && voidReturnValueCalls()
 && !uiSyncMethodCalls() {
 Runnable worker = new Runnable() {
 public void run() {
 try {
 proceed();
 } catch (Exception ex) {
 ... deal with exception
 ... call exception listener, log it, etc.
 ... and then optionally rethrow it after wrapping
 }

312 CHAPTER 9
Implementing thread safety
 }};
 EventQueue.invokeLater(worker);
}

Notice how easy it was to modify our exception-handling strategy. If you were not
using AspectJ and you employed anonymous classes, you would have to modify
every instance in which calls are routed asynchronously. If you used named
classes to carry out the operations, you would have to modify each of those
classes. With such widespread modifications, ensuring consistent implementa-
tion becomes a daunting task. Using the conventional solution, it is possible to
get the expected behavior the first time—with a lot of labor and diligence. How-
ever, ensuring continual adherence to the policy becomes challenging. With
AspectJ, making changes in the exception-handling strategy becomes quite easy.
For example, if you decide to log an exception in addition to passing it to an
exception listener, all you need to change is the aspect itself and nothing else.
This is the power of AOP and AspectJ—not only do you save a huge amount of
code in the core implementation, you make it easy to implement additional system-
wide concerns.

 For synchronous invocation, you can use the exception introduction pattern
presented in chapter 8. With this pattern, you throw a concern-specific runtime
exception, then write another aspect to unwrap it and throw the exception origi-
nally thrown by the operation. This way, the clients need not be aware of the
routing and issues related to it.

 The use of AspectJ to implement Swing’s single-thread rule not only modu-
larizes and simplifies the implementation, it also makes it easy to implement an
exception-handling strategy that is itself modularized.

9.5.2 Avoiding the overhead

In our solution so far, we captured all the calls to the UI methods. This is some-
what inefficient because before every call, the aspect would perform an Event-
Queue.isDispatchThread() call in the pointcut. Usually the overhead is not high
enough to warrant any modifications. However, if overhead is a problem for your
system, you can use the typical technique of limiting join points captured by a
pointcut to a certain package. For example, when the code updated by a non-
AWT thread is limited to certain classes and/or packages, you may limit auto-
matic routing to only those modules. You can do this easily with pointcuts that
include within() and withincode(), as described in chapter 3.

 Instead of using DefaultSwingThreadSafetyAspect, we can use our own aspect
to limit the applicability of the routing advice, as shown here:

Improving the responsiveness of UI applications 313
public aspect LimitedSwingThreadSafetyAspect
 extends SwingThreadSafetyAspect {
 pointcut viewMethodCalls()
 : call(* javax..JComponent+.*(..));

 pointcut modelMethodCalls()
 : call(* javax..*Model+.*(..))
 || call(* javax.swing.text.Document+.*(..));

 pointcut uiMethodCalls()
 : (viewMethodCalls() || modelMethodCalls())
 && within(com.manning.network..*);

 pointcut uiSyncMethodCalls() :
 call(* javax..JOptionPane+.*(..))
 && within(com.manning.network..*);
}

In this aspect, we restrict the application of SwingThreadSafetyAspect to calls
made from com.manning.network and all its direct and indirect subpackages.

 If you use this kind of optimization, I strongly recommend that you also use
the policy-enforcement aspect developed in chapter 6, section 6.6, which detects
the violations of Swing’s single-thread rule during the development and testing
phases. This way, wrong assumptions, if any, will be caught early on.

9.6 Improving the responsiveness of UI applications

While we have focused on the use of the worker object creation pattern to ensure
thread safety, a small variation of the same theme can be used to improve the
responsiveness of UI applications. For example, a common need in UI applica-
tions is to avoid locking the GUI when performing a time-consuming task. Let’s
say that you want to implement a time-consuming task, such as sending an
email. You do not want to lock up the UI while the email is being sent. Let’s con-
sider the example class in listing 9.12.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class TestResponsiveness {
 public static void main(String[] args) {
 JFrame appFrame = new JFrame();
 appFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Listing 9.12 TestResponsiveness.java

314 CHAPTER 9
Implementing thread safety
 JButton sendEmailButton = new JButton("Send Emails");
 sendEmailButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 sendEmails();
 }
 });
 appFrame.getContentPane().add(sendEmailButton);

 appFrame.pack();
 appFrame.setVisible(true);
 }

 private static void sendEmails() {
 try {
 // simulate long execution...
 Thread.sleep(20000);
 } catch (InterruptedException ex) {
 }
 }
}

Compile and run this program and click on the Send Emails button. The whole GUI
will be locked for about 20 seconds. The reason is that sendEmails() is executed in
the event-dispatching thread, preventing it from refreshing the GUI. Locking up the
GUI in this way is undesirable, and yet it is seen quite frequently. The reason, I sus-
pect, is the invasiveness associated with implementing a solution that performs
operations in the background. The result is that asynchronous executions are often
implemented only for really time-consuming operations, and other not-so-time-
consuming operations are allowed to execute directly in the caller thread.

 Implementing asynchronous execution of a thread is a simple task when you
are using AspectJ. All you need to do is use the reusable aspect shown in listing 9.13
and provide concrete subaspects of it. We first introduced this aspect in chapter 8,
listing 8.4, when we used it to demonstrate the worker object creation pattern.
Let’s enhance it to show how we can avoid locking the GUI by asynchronously
routing calls to time-consuming methods from the event-dispatching thread
itself. The reusable implementation in listing 9.13 enables the subaspect to
improve responsiveness by simply providing the definition for a pointcut.

import java.awt.EventQueue;

public abstract aspect AsynchronousExecutionAspect {
 public abstract pointcut asyncOperations();

Listing 9.13 AsynchronousExecutionAspect.java

Improving the responsiveness of UI applications 315
 void around() : asyncOperations()
 && if(EventQueue.isDispatchThread()) {
 Runnable worker = new Runnable() {
 public void run() {
 proceed();
 }
 };
 Thread asyncExecutionThread = new Thread(worker);
 asyncExecutionThread.start();
 }
}

The aspect in listing 9.13 dispatches the operation to a new thread if the
requester thread is the event-dispatching thread. You can modify this base aspect
to augment additional functionality, such as indicating the progress of an execut-
ing operation by displaying a progress bar.

 We can enable asynchronous execution of the sendEmails() operation by pro-
viding a concrete subaspect (listing 9.14).

public aspect TestAsynchronousExecutionAspect
 extends AsynchronousExecutionAspect {
 public pointcut asyncOperations()
 : call(void sendEmails());
}

While the simple implementation in listing 9.14 utilizes a new thread for each
new request, you could modify it to use a prestarted background worker thread
and push background jobs into it. You could also combine thread-pooling tech-
niques from chapter 7. Whichever strategy you use, you can be sure that the
modifications are limited only to the aspect. This approach allows you to “pay
as you go.” Rather than deciding up front whether to use a dedicated thread
and thread pooling, you can initially think only about the problem at hand—
running a task asynchronously. All you need to be concerned about is that this
task requires you to have a separate thread executing the job—whether that
thread is a dedicated thread or is obtained from a thread pool is not the con-
cern of the moment. If you don’t use AspectJ, you either have to make these
decisions up front or risk embracing invasive changes later on (the architect’s
dilemma once again). With AOP, you can implement exactly what you need at
the time, with the assurance that it will not force you to add a system-wide

Listing 9.14 TestAsynchronousExecutionAspect.java

316 CHAPTER 9
Implementing thread safety
change later. With the ease of implementing these background tasks, you can
improve the user experience by creating a program that is perceived as fast
and responsive.

9.7 Modularizing the read-write lock pattern

As a sample of modularizing classic thread-safety patterns using AspectJ, let’s
look at the read-write lock pattern. This pattern offers maximal liveliness while
ensuring the integrity of objects in situations where you expect there will be a lot
of reader threads for an object but only a few writer threads that can modify it.
The fundamental idea is that any number of readers could be simultaneously
reading the state of the object as long as there is no thread modifying the state at
the same time. See the references listed in the “Resources” section at the end of
the book to learn more about the read-write lock pattern.

 Implementing this pattern in the conventional way requires adding certain code
to each method that reads or modifies the state of an object. In this section, we
modularize the pattern using AspectJ. We introduce a reusable aspect that enables
you to implement this pattern with your classes just by adding a simple subaspect.

 We base our conventional and AspectJ solutions on the concurrency utility
library by Doug Lea available at http://gee.cs.oswego.edu/dl/classes/EDU/oswego/
cs/dl/util/concurrent/intro.html. This library provides high-level thread concur-
rency support and is being considered for inclusion in a future version of Java
under JSR 166.

9.7.1 Implementation: the conventional way

Consider the banking-related classes introduced in chapter 2. In this section,
you will learn about the read-write lock pattern by implementing it with the
Account class3 from listing 2.5 that models accounts in a banking system.

 The read-write lock pattern uses a pair of locks: the reader lock and the writer
lock. Multiple readers can simultaneously acquire the reader lock as long as the
writer lock isn’t acquired. Only one writer, on the other hand, can acquire the
write lock, and it can be acquired only when no reader locks are in force. Imple-
menting the pattern with the Account class requires that each method that per-

3 The read-write lock pattern is more appropriate where the protected operations are computationally
expensive. Our Account class’s operation is too simple for this. A more suitable candidate would per-
form, say, JDBC operations or business-rule evaluations. However, using the Account class illustrates
the core concepts without worrying about the details.

http://gee.cs.oswego.edu/dl/classes/EDU/oswego/

Modularizing the read-write lock pattern 317
forms a read-only operation acquire the read lock, whereas the methods that
affect the state of the class must acquire the write lock. Once the operation is
over, it must release the lock that it acquired. Listing 9.15 shows the Account class
with the necessary modifications.

import EDU.oswego.cs.dl.util.concurrent.*;

public abstract class Account {
 private float _balance;
 private int _accountNumber;

 private ReadWriteLock _lock
 = new ReentrantWriterPreferenceReadWriteLock();

 public Account(int accountNumber) {
 _accountNumber = accountNumber;
 }

 public void credit(float amount) {
 try {
 _lock.writeLock().acquire();
 setBalance(getBalance() + amount);
 } catch (InterruptedException ex) {
 throw new RuntimeException(ex);
 } finally {
 _lock.writeLock().release();
 }
 }

 public void debit(float amount)
 throws InsufficientBalanceException {
 try {
 _lock.writeLock().acquire();
 float balance = getBalance();
 if (balance < amount) {
 throw new InsufficientBalanceException(
 "Total balance not sufficient");
 } else {
 setBalance(balance - amount);
 }
 } catch (InterruptedException ex) {
 throw new RuntimeException(ex);
 } finally {
 _lock.writeLock().release();
 }
 }

Listing 9.15 Account.java: with the read-write lock pattern implemented

Creating the
read-write lock

Acquiring the
write lock

Releasing the
write lock

Acquiring the
write lock

Releasing the
write lock

318 CHAPTER 9
Implementing thread safety
 public float getBalance() {
 try {
 _lock.readLock().acquire();
 return _balance;
 } catch (InterruptedException ex) {
 throw new RuntimeException(ex);
 } finally {
 _lock.readLock().release();
 }
 }

 public void setBalance(float balance) {
 try {
 _lock.writeLock().acquire();
 _balance = balance;
 } catch (InterruptedException ex) {
 throw new RuntimeException(ex);
 } finally {
 _lock.writeLock().release();
 }
 }
}

We add a lock object of type ReentrantWriterPreferenceReadWriteLock in the
ReadWriteLock implementation that allows the same thread to acquire a lock in a
reentrant manner; that way, a thread can acquire a lock even if it is already in
possession of it. The acquire() method on the locks throws InterruptedException.
We simply rethrow it by wrapping it in a RuntimeException and thus avoid having
to change each method to declare it will throw InterruptedException. The use of
try/finally ensures the locks’ release even when the core operation aborts due to
an exception.

 Clearly, the necessary code is invasive even for a class as simple as Account.
You must modify each class that needs this pattern in a similar manner. Any
missed method will result in potentially fatal program behavior. Further, you
must make sure that the method that acquires a read lock releases only the read
lock and not a write lock, and vice versa.

9.7.2 Implementation: the AspectJ way

The core concept behind the AspectJ-based solution is to create an aspect that
encapsulates the pattern. This way, we can avoid the need to modify each class. Fur-
ther, because the pattern is reusable, we would like the aspect to be reusable as well.

Acquiring the
read lock

Releasing the
read lock

Acquiring the
write lock

Releasing the
write lock

Modularizing the read-write lock pattern 319
 To achieve our goal, let’s write a base aspect that captures the read-write lock pat-
tern. To enable synchronization in this aspect, let’s write a concrete aspect to extend
it that provides the definition for two pointcuts: one to capture the execution of read
methods and the other to capture the execution of write methods. Listing 9.16
shows the implementation of the thread-safety pattern in an abstract aspect.

import EDU.oswego.cs.dl.util.concurrent.*;

public abstract aspect ReadWriteLockSynchronizationAspect
 perthis(readOperations() || writeOperations()) {

 public abstract pointcut readOperations();

 public abstract pointcut writeOperations();

 private ReadWriteLock _lock
 = new ReentrantWriterPreferenceReadWriteLock();

 before() : readOperations() {
 _lock.readLock().acquire();
 }

 after() : readOperations() {
 _lock.readLock().release();
 }

 before() : writeOperations() {
 _lock.writeLock().acquire();
 }

 after() : writeOperations() {
 _lock.writeLock().release();
 }

 static aspect SoftenInterruptedException {
 declare soft : InterruptedException :
 call(void Sync.acquire());
 }
}

Using the perthis() association specification, we associate an aspect instance
with each worker object that matches the read or write methods defined in the
concrete aspects. (See chapter 4, section 4.3.2, to learn more about aspect associ-
ation.) A new aspect instance will be created for each object for which a captured

Listing 9.16 ReadWriteLockSynchronizationAspect.java

Aspect association b

Read operations c

Write operations d

Lock
object

 e

Read
operation
management

 f

Write
operation
management

 g

 h Softening of
InterruptedException

 b

320 CHAPTER 9
Implementing thread safety
method is executed. Association lets us introduce the lock object to each synchro-
nized class without knowing about the specific type of the object.4

The abstract readOperations() pointcut requires the concrete subaspects to
define it to capture all methods that do not modify the state of the object.
Similarly, the abstract writeOperations() pointcut captures methods that modify
the state of the objects.
The _lock member serves as the synchronization support for the read-write lock
pattern. Since the aspect is associated with the objects of the matched join
points, the _lock member is in turn associated with the instances of the objects.
The before and after advice to the readOperations() pointcut acquires and
releases the read lock, respectively.
Similarly, the before and after advice to the writeOperations() pointcut acquires
and releases the write lock, respectively.
The softening of the exception converts the InterruptedException thrown by
acquire() method calls, thus eliminating the need to alter the APIs for the cap-
tured operations. You may want to use the exception introduction pattern intro-
duced in chapter 8, section 8.3, to handle the exception correctly at a higher
level in the call stack.

To enable the read-write lock pattern for the Account class, you can write a sub-
aspect providing the definition for abstract pointcuts. Note that you do not need
to write one aspect per class. It is okay, for example, to write an aspect capturing
methods for all classes in a package. Listing 9.17 shows a subaspect that extends
ReadWriteLockSynchronizationAspect to enable safe concurrent access to the
Account class.

aspect BankingSynchronizationAspect
 extends ReadWriteLockSynchronizationAspect {
 public pointcut readOperations()

4 An alternative would have been to use a member introduction mechanism to introduce a lock object in each
participating class. However, with this technique, keeping the base aspect reusable requires jumping through
a couple of hoops. First, you need to write an interface and introduce the lock object to it. Then each sub-
aspect must use declare parents to make all the participating classes implement the interface. There is
no programmatic way to communicate the need for declare parents. Instead, we use perthis() associa-
tion with abstract pointcuts; in this way the compiler will force each subaspect to provide a definition for
each abstract pointcut that is in the base aspect before it can declare itself as a concrete aspect. Such is the
power of using an aspect association technique for creating reusable aspects. See section 4.3.5 for more de-
tails on the two approaches.

 c

 d

 e

 f

 g

 h

Listing 9.17 BankingSynchronizationAspect.java

Summary 321
 : execution(* Account.get*(..))
 || execution(* Account.toString(..));

 public pointcut writeOperations()
 : execution(* Account.*(..))
 && !readOperations();
}

The BankingSynchronizationAspect aspect provides definitions for both the
abstract pointcuts, readOperations() and writeOperations(), in the base aspect.
It defines the execution of any methods whose name starts with get (as well as
any method with the name toString()) as read operations. Notice the way that
the writeOperations() pointcut is defined to specify all the operations except
those captured by the readOperations() pointcut. This is a defensive approach;
it is better to err on the side of safety by declaring that all the methods that are
not performing read-only operations are state-altering methods.

 Now the synchronization concern of the Account class has been taken care of
by simply writing an aspect consisting of a handful of lines. If you wanted to pro-
vide thread-safe access to other classes, you could simply modify pointcuts in this
aspect or write new concrete aspects for those classes. You could also use the par-
ticipant pattern, described in chapter 8, to let classes have closer control over the
methods that participate in the synchronization aspect.

 We now have a reusable implementation for a reusable pattern. You can make
the ReadWriteLockSynchronizationAspect a part of your library of aspects and
avoid reinventing the wheel each time. By doing so, you will be assured that the
pattern is being implemented correctly and consistently.

9.8 Summary

Ensuring thread safety is inherently complex. The conventional solutions make it
even more complex by requiring system-wide invasive changes. The conceptual
reusability of the few thread-safety patterns is lost in the conventional implemen-
tations. AOP/AspectJ fills this gap between the concepts and the implementation
by modularizing the pattern into reusable aspects.

 Swing’s single-thread rule is simple for component developers, but often
requires system-wide changes for developers who are implementing it in multi-
threaded UI applications. The solution we’ve presented eliminates the need for
invasive changes while ensuring a consistent behavior. By employing reusable
aspects, you make adhering to Swing’s thread-safety rule as easy as extending

322 CHAPTER 9
Implementing thread safety
that aspect and providing a few definitions. With AspectJ, you have a simple
model for thread safety that does not burden application developers with its
complex usage.

 Similarly, by introducing a reusable aspect encapsulating the read-write lock
pattern, implementing this feature of thread safety is as easy as adding a few sim-
ple aspects. You no longer have to hit the books every time you need to under-
stand exactly how the pattern is supposed to work. Instead, you just need to
know which methods access the state in a read-only manner and which ones alter
the state. The ideas presented in these examples can be extended to offer inter-
esting solutions to otherwise laborious work. For example, you can extend
aspects from the Swing UI solution in section 9.4 to provide thread-safe access to
your own classes. You can then require that only a preassigned thread be able to
access objects of those classes and that other threads route the calls through the
preassigned thread using an aspect.

 The power of AspectJ and the worker object creation pattern should be clear
to you now. In the following chapters, we will use this pattern to solve complex
crosscutting concerns using AspectJ.

10Authentication and
authorization
This chapter covers
■ Using JAAS to implement authentication and

authorization
■ Using AspectJ to modularize JAAS-based

authentication
■ Using AspectJ to modularize JAAS-based

authorization
323

324 CHAPTER 10
Authentication and authorization
An important consideration for modern software systems, security consists of many
components, including authentication, authorization, auditing, protection against
web site attacks, and cryptography. In this chapter, we focus on two of these:
authentication and authorization. Together these security components manage
system access by evaluating users’ identities and credentials.

 This chapter introduces an AspectJ-based solution using the Java Authentica-
tion and Authorization Service (JAAS), one of the newest ways to implement
authentication and authorization in Java applications. You’ll see how AspectJ-
based solutions work in cooperation—and not in competition—with existing
technologies. Using AspectJ helps you to modularize your implementation,
which leads to better response to requirement changes, while at the same time
greatly reducing the amount of code you have to write.

 To get a clear understanding of the core problem and how you’d use JAAS to
address it, we also examine the conventional solution for implementing authen-
tication and authorization. Developing the conventional solution serves two pur-
poses: it introduces the basic mechanism offered by JAAS and it demonstrates its
shortcomings. Later when we present the AspectJ-based solution, this knowledge
will come in handy.

10.1 Problem overview

Authentication is a process that verifies that you are who you say you are. Authoriza-
tion, on the other hand, is a process that establishes whether an authenticated
user has sufficient permissions to access certain resources. Both components are
so closely related that it is difficult to talk about one without the other—authori-
zation cannot be accomplished without first performing authentication, and
authentication alone is rarely sufficient to determine access to resources.

 Since authentication and authorization are so important—and continue to
become even more so given our highly connected world—we must learn to deal
with the various ways of implementing such control. Modern APIs like JAAS (which
is now a standard part of J2SE 1.4) abstract the underlying mechanisms and allow
you to separate the access control configuration from the code. The application-
level developer doesn’t have to be aware of the underlying mechanism and won’t
need to make any invasive changes when it changes. In parallel to these APIs,
efforts such as the Security Assertion Markup Language (SAML) and the Extensi-
ble Access Control Markup Language (XACML) aim to standardize the configura-
tion specification language. The overall goal of these APIs and standardization
efforts is to reduce complexity and provide agile implementations.

A simple banking example 325
 Conventional programming methods, even when using APIs such as JAAS,
require you to modify multiple modules individually to equip them with authen-
tication and authorization code. For instance, to implement access control in a
banking system, you must add calls to JAAS methods to all the business methods.
As the business logic is spread over multiple modules, so too is the implementa-
tion of the access control logic.

 Unlike the bare OOP solution, an EJB framework handles authorization in a
much more modular way, separating the security attributes in the deployment
descriptor. As we mentioned in chapter 1, the very existence of EJB is proof that
we need to modularize such concerns. When EJB or a similar framework is not a
choice, as in a UI program, the solution often lacks the desired modularization.
With AspectJ, you now have a much better solution for all such situations.

NOTE Even with the EJB framework, you may face situations that need a cus-
tom solution for authentication and authorization. Consider, for exam-
ple, data-driven authorization where the authorization check not only
considers the identity of the user and the functionality being accessed,
but also the data involved. Current EJB frameworks do not offer a good
solution to these problems that demand flexibility.

10.2 A simple banking example

To illustrate the problem and provide a test bed, let’s write a simple banking sys-
tem. We’ll examine only the parts of the system that illustrate issues involved in
conventional and AspectJ-based solutions to authentication and authorization
implementation. The banking example here differs from the one in chapter 2 in
a few ways: We refactor the classes to create interfaces, we put all the classes and
interfaces in the banking package, and we introduce a new class. We will continue
to build on this system in the next two chapters.

 Listing 10.1 shows the Account interface. (As you can see, we have omitted
some of the methods that you would expect to see in an Account interface.) Later
we’ll create a simple implementation of this interface. The exception Insufficient-
BalanceException that we’ll use to identify an insufficient balance is implemented
in listing 10.2.

package banking;

public interface Account {
 public int getAccountNumber();

Listing 10.1 Account.java

326 CHAPTER 10
Authentication and authorization
 public void credit(float amount);

 public void debit(float amount)
 throws InsufficientBalanceException;

 public float getBalance();
}

package banking;

public class InsufficientBalanceException extends Exception {
 public InsufficientBalanceException(String message) {
 super(message);
 }
}

Now, let’s look at a simple, bare-bones implementation of the Account interface.
Later, we’ll pose the problem of authorizing all of its methods, using both conven-
tional and AspectJ-based solutions. Listing 10.3 shows a simple implementation of
the Account interface that models a banking account.

package banking;

public class AccountSimpleImpl implements Account {
 private int _accountNumber;
 private float _balance;

 public AccountSimpleImpl(int accountNumber) {
 _accountNumber = accountNumber;
 }

 public int getAccountNumber() {
 return _accountNumber;
 }

 public void credit(float amount) {
 _balance = _balance + amount;
 }

 public void debit(float amount)
 throws InsufficientBalanceException {
 if (_balance < amount) {
 throw new InsufficientBalanceException(
 "Total balance not sufficient");

Listing 10.2 InsufficientBalanceException.java

Listing 10.3 AccountSimpleImpl.java

A simple banking example 327
 } else {
 _balance = _balance - amount;
 }
 }

 public float getBalance() {
 return _balance;
 }
}

The code for AccountSimpleImpl is straightforward. To examine how our solution
works across multiple modules and with nested methods that need authorization,
let’s introduce another class, InterAccountTransferSystem (listing 10.4), which
simply contains one method for transferring funds from one account to another.

package banking;

public class InterAccountTransferSystem {
 public static void transfer(Account from, Account to,
 float amount)
 throws InsufficientBalanceException {
 to.credit(amount);
 from.debit(amount);
 }
}

Finally, to test our solution we’ll write a simple Test class. In the sections that fol-
low, we will use this class as a basis for adding authentication and authorization
in the conventional way; later in the chapter, we will use the class to test the
AspectJ-based solution. Listing 10.5 shows the implementation of the Test class.

package banking;

public class Test {
 public static void main(String[] args) throws Exception {
 Account account1 = new AccountSimpleImpl(1);
 Account account2 = new AccountSimpleImpl(2);

 account1.credit(300);
 account1.debit(200);

Listing 10.4 InterAccountTransferSystem.java

Listing 10.5 Test.java: version with no authentication or authorization

328 CHAPTER 10
Authentication and authorization
 InterAccountTransferSystem.transfer(account1, account2, 100);
 InterAccountTransferSystem.transfer(account1, account2, 100);
 }
}

Because of the way the operations are arranged, the last operation should throw
an InsufficientBalanceException. We will ensure that our solutions satisfy the
requirement of throwing this exception (as opposed to some other type of excep-
tion or no exception at all) when the business logic detects insufficient funds in
the debiting account.

 Next, let’s implement a basic logging aspect (listing 10.6) to help us under-
stand the activities taking place.

package banking;

import org.aspectj.lang.*;

import logging.*;

public aspect AuthLogging extends IndentedLogging {
 declare precedence: AuthLogging, *;

 public pointcut accountActivities()
 : execution(public * Account.*(..))
 || execution(public * InterAccountTransferSystem.*(..));

 public pointcut loggedOperations()
 : accountActivities();

 before() : loggedOperations() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("<" + sig.getName() + ">");
 }
}

The base aspect, IndentedLogging, was discussed in section 5.5.2. It provides the
support for indenting the log statements according to their call depth. We need
to define the loggedOperation() pointcut that was declared in the base Indented-
Logging aspect. Later, we will add authentication and authorization logging to it
as we develop the solution. We won’t log more details about the activities (such as
account number and amount involved), since the correctness of the core imple-
mentation is not the focus of this chapter.

Listing 10.6 AuthLogging.java: logging banking operations

Authentication: the conventional way 329
 When we compile the basic banking application and the logging aspect, and
then run the test program, we see output similar to this:

> ajc banking*.java logging*.java
> java banking.Test
<credit>
<debit>
<transfer>
 <credit>
 <debit>
<transfer>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
...more call stack

The output shows the interaction when no authentication or authorization is in
place. This interaction log will serve as the basis for comparison when we add
authentication and authorization.

 Coverage of the JAAS mechanism is brief since our purpose is to demonstrate
the AOP solution. We encourage you to read a good JAAS book or tutorial so that
you will understand the more complex issues that we do not deal with here; then
you can extend the AspectJ-based solution to them as well. Please note that
although we use a JAAS-based example to explain the AspectJ-based solution, you
can also use the solution as a template for other kinds of access control systems.

10.3 Authentication: the conventional way

In this section, we add authentication functionality to our basic banking system.
We employ the upfront login approach—asking for the username and password at
the beginning of the program. Because of its complexity, we won’t look at an
example of just-in-time authentication (in which authentication does not occur
until the user accesses the system functionality that requires user identity verifica-
tion) in this section, since the point we are demonstrating is basically the same.

10.3.1 Implementing the solution

The authentication functionality in JAAS consists of the following:
■ A LoginContext object
■ Callback handlers that present the login challenge to the user
■ A login configuration file that enables you to modify the configuration

without changing the source code

➥

330 CHAPTER 10
Authentication and authorization
The callback handler provides a mechanism for acquiring authentication infor-
mation. It asks users to provide their name and password either on the console,
in a login dialog box, or through some other means. In our case, we use a simple
TextCallbackHandler that is part of Sun’s JRE 1.4 distribution. If you are using
another JRE, this class may not be available, and you will have to either find an
equivalent or write one of your own. TextCallbackHandler, when invoked, simply
asks for the username and password and supplies the information to the authen-
tication system invoking it. Since the username and password are visible to the
user, you are unlikely to use this callback handler in a real system, but it serves as
a simple, illustrative mechanism for our purposes.

NOTE We use the term user to mean anyone and anything accessing the sys-
tem. It includes human as well as nonhuman users—people and other
parts of the system. For example, in a business-to-business transac-
tion, a machine is likely to represent the identity of a business access-
ing the service.

The login configuration file sets up the class that is used as the authentication
module. We use a very simple authentication module, sample.module.SampleLogin-
Module, provided as a part of the JAAS tutorial (see http://java.sun.com/j2se/1.4/
docs/guide/security/jaas/tutorials/GeneralAcnAndAzn.html). The classes from the
sample package we use are described in the tutorial. Employing this simple
scheme allows us to focus on using AOP instead of the details of JAAS. The fol-
lowing login configuration file (sample_jaas.config) associates the Sample config-
uration with the sample.module.SampleLoginModule class:

Sample {
 sample.module.SampleLoginModule required debug=true;
};

The LoginContext object needs two parameters: a configuration name and a call-
back handler. The configuration name (Sample), in conjunction with the configu-
ration file, determines the login module used by the system.

 Let’s change the Test class to implement authentication with JAAS in the con-
ventional way, as shown in listing 10.7.

package banking;

import javax.security.auth.login.LoginContext;

import com.sun.security.auth.callback.TextCallbackHandler;

Listing 10.7 Test.java: with authentication functionality

http://java.sun.com/j2se/1.4/

Authentication: the conventional way 331
public class Test {
 public static void main(String[] args) throws Exception {
 LoginContext lc
 = new LoginContext("Sample",
 new TextCallbackHandler());
 lc.login();

 Account account1 = new AccountSimpleImpl(1);
 Account account2 = new AccountSimpleImpl(2);

 account1.credit(300);
 account1.debit(200);

 InterAccountTransferSystem.transfer(account1, account2, 100);
 InterAccountTransferSystem.transfer(account1, account2, 100);
 }
}

We enable authentication in our banking system by performing login before
executing any core code. First, we create a LoginContext object, supplying it
with the name of the configuration we wish to use and the callback handler
that will request the username and password. Next, we invoke the login()
method on the LoginContext object. If the username and password pass the
authentication test, the method simply returns normally. If, however, the user-
name and password fail to match, it throws a checked exception of type Login-
Exception. Once the authentication is passed successfully, we continue with the
main program functionality.

 Since we have chosen to implement upfront login authentication, this
arrangement will satisfy that requirement. If, however, you want just-in-time
authentication, you will need to add similar authentication coding in every such
operation. Just-in-time authentication is useful when the system contains several
parts that do not require authenticating the user. Pre-authenticating users may
be less than desirable in such cases.

10.3.2 Testing the solution

To examine the interaction, let’s improve the logging aspect for capturing the
authentication join points. We will change the pointcuts to log the login join
points, as shown in listing 10.8. In the section that follows, we will use the same
logging aspect when we test our AspectJ-based solution.

332 CHAPTER 10
Authentication and authorization
package banking;

import org.aspectj.lang.*;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;

import logging.*;

public aspect AuthLogging extends IndentedLogging {
 declare precedence: AuthLogging, *;

 public pointcut accountActivities()
 : execution(public * Account.*(..))
 || execution(public * InterAccountTransferSystem.*(..));

 public pointcut authenticationActivities()
 : call(* LoginContext.login(..));

 public pointcut loggedOperations()
 : accountActivities()
 || authenticationActivities();

 before() : loggedOperations() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("<" + sig.getName() + ">");
 }
}

When we run the program, it asks for a username and password. If the user can
be authenticated, it proceeds with the remaining part of the program. Other-
wise, it throws a LoginException:

> ajc banking*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 banking.Test

<login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
<credit>
<debit>
<transfer>

Listing 10.8 AuthLogging.java: with authentication logging implemented

➥

➥

Authentication: the AspectJ way 333
 <credit>
 <debit>
<transfer>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
... the rest of call stack

With the exception of presenting the user with a login challenge, there is no dif-
ference in interaction compared with the base system. We now have a banking
system that allows access only to authenticated users.

10.4 Authentication: the AspectJ way

At this point, you should have a good understanding of how to use JAAS for
authentication. However, you’ll recall that when we used it in the conventional
solution, we were forced to make changes to the core system in order to add the
authentication. Additionally, if we had implemented just-in-time authentication
in the conventional solution, it would have forced us to change multiple mod-
ules, causing code scattering. The AspectJ-based solution will improve the modu-
larity of the solution and avoid code scattering. Let’s take a look.

10.4.1 Developing the solution

In this section, we will create a base aspect that we can use to authenticate any
system and a subaspect of it that will enable the banking system’s authentication
mechanism. To enable authentication in your system, all you need to do is
extend the base aspect and provide a list of operations that need authentication
in the pointcut. Listing 10.9 shows the base aspect that modularizes the authen-
tication functionality.

package auth;

import javax.security.auth.Subject;
import javax.security.auth.login.*;

import com.sun.security.auth.callback.TextCallbackHandler;

public abstract aspect AbstractAuthAspect {
 private Subject _authenticatedSubject;

 public abstract pointcut authOperations();

➥

Listing 10.9 AbstractAuthAspect.java: the base authentication aspect

Authenticated subject b

Pointcut for operations
needing authentication c

334 CHAPTER 10
Authentication and authorization
 before() : authOperations() {
 if(_authenticatedSubject != null) {
 return;
 }

 try {
 authenticate();
 } catch (LoginException ex) {
 throw new AuthenticationException(ex);
 }
 }

 private void authenticate() throws LoginException {
 LoginContext lc = new LoginContext("Sample",
 new TextCallbackHandler());
 lc.login();
 _authenticatedSubject = lc.getSubject();
 }

 public static class AuthenticationException
 extends RuntimeException {
 public AuthenticationException(Exception cause) {
 super(cause);
 }
 }
}

The aspect stores the authenticated subject in an instance variable. By storing
the authenticated subject and checking for it prior to invoking the login logic,
we avoid asking for a login every time a method that needs authentication is
called. After a successful login operation, we can obtain this member from the
LoginContext object.

 In our implementation, we will use the whole process as the login scope.
Once a user is logged in, he will never have to log in again during the lifetime of
the program. Depending on your system’s specific requirements, you may want
to move this member to an appropriate place. For example, if you are writing a
servlet, you may want to keep this member in the session object. We also assume
that a user, once logged in, never logs out. If this is not true in your system, you
need to set this member to null when the current user logs out.
The abstract pointcut is meant to be defined in subaspects capturing all the
operations needing authentication.
The before advice to the authOperations() pointcut ensures that our code per-
forms authentication logic only if this is the first time during the program’s life-
time that a method that needs authentication is being executed. If it is the first

Authentication
advice

 d

Authentication
logic

 e

Authentication
exception

 f

 b

 c

 d

Authentication: the AspectJ way 335
time, _authenticatedSubject will be null, and the authenticate() method will be
invoked to perform the core authentication logic. When subsequent join points
that need authentication are executed, because the _authenticatedSubject is
already not null the login process won’t be carried out.

 Since the LoginException is a checked exception, the before advice cannot
throw it. Throwing such exceptions would result in compiler errors. We could have
simply softened this exception using the declare soft construct. However, following
the exception introduction pattern discussed in chapter 8, we instead define a con-
cern-specific runtime exception that identifies the cause of the exception, should a
caller wish to handle the exception.
The core authentication operation is performed in this method. If the login fails,
it throws a LoginException that aborts the program. If the login succeeds, it
obtains the subject from the login context and sets it to the instance variable
_authenticatedSubject.
AuthenticationException is simply a RuntimeException that wraps the original
exception.

Adding authentication functionality to banking is a now a simple matter of writing
an aspect, as shown in listing 10.10, that extends AbstractAuthAspect and defines
the authOperations() pointcut. In our example, we define the pointcut to capture
calls to all methods in the Account and InterAccountTransferSystem classes.

package banking;

import auth.AbstractAuthAspect;

public aspect BankingAuthAspect extends AbstractAuthAspect {
 public pointcut authOperations()
 : execution(public * banking.Account.*(..))
 || execution(public * banking.InterAccountTransferSystem.*(..));
}

Although we have used just-in-time authentication in this example, you can eas-
ily implement up-front authentication by simply adding a pointcut correspond-
ing to the method that represents “up-front” for you, such as the main() method
in the console application or the frame initialization in a UI application. For
example, defining the authOperations() pointcut as follows will perform authen-
tication as soon as the main() method begins to execute:

 public pointcut authOperations()
 : execution(void banking.Test.main(String[]));

 e

 f

Listing 10.10 BankingAuthAspect.java: authenticating banking operations

336 CHAPTER 10
Authentication and authorization
With such a pointcut, the authentication advice will kick in as soon as the pro-
gram starts entering the main() method. Further, when you choose up-front
authentication, you can write an additional advice that tests for authentication
status before executing a method that needs authenticated access. This advice
could simply throw a runtime exception, because accessing this method without
prior authentication is a violation.

10.4.2 Testing the solution

We now have the system equipped with authentication. When we compile the
new aspects with the classes and interfaces in section 10.2, along with the logging
aspect in listing 10.8, and run the test program, it prompts for a username and
password, as in the conventional solution developed earlier:

> ajc banking*.java auth*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 banking.Test

<credit>
 <login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
<debit>
<transfer>
 <credit>
 <debit>
<transfer>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
... the rest of call stack

As expected, this output is identical to that shown in section 10.3. We now have a
system with authentication modularized in one reusable abstract aspect and one
system-specific concrete aspect.

10.5 Authorization: the conventional way

The authorization process determines whether the user has sufficient credentials
to access certain functions within the system. Let’s consider a banking system

➥

➥

➥

Authorization: the conventional way 337
where the authorization rule specifies that only users with managerial credentials
may waive certain fees. We need to perform the following operations:

1 Authentication is a prerequisite to authorization; unless we are certain
that users are who they claim to be, there is no point in checking their
credentials. Therefore, we first need to verify that users have been
authenticated, and if they have not, we need to do so.

2 Then we need to retrieve users’ credentials. You can do this in various
ways depending on the authorization scheme you use. For example, the
authorization system could check a policy file to extract the credentials
associated with the authorized person.

3 Last, we need to verify whether those credentials are sufficient to access
the fee-waiving operation. For example, if a person has only the teller
credential and not the managerial credential, fee-waiving operations
won’t be available to that user.

10.5.1 Understanding JAAS-based authorization

While the exact way you use JAAS will depend on your system’s access control
requirements, a typical way to use it to perform authorization requires that you
follow these steps:

1 Perform authentication—The system first needs to authenticate the user
using a login or any suitable mechanism. Then it must obtain a verified
subject from the authentication subsystem. The Subject class encapsu-
lates information about a single entity, such as its identification and cre-
dentials. All subsequent operations that require authorization must
check that this subject has sufficient credentials to access the operations.

2 Create an action object—JAAS requires that each method that needs an
authorization check be encapsulated in an action object. This object must
implement either PrivilegedAction or PrivilegedExceptionAction.
Both interfaces contain just one method: run(). The only difference is
that the run() method has no exception declaration in the former inter-
face, whereas in the latter, it declares that it may throw an exception of
type Exception. In either case, the run() method needs to execute the
intended operation.

3 Execute the action object—The action object we just created needs to be
executed on behalf of the authenticated subject using static methods in

338 CHAPTER 10
Authentication and authorization
the Subject class: Subject.doAsPrivileged(Subject, PrivilegedAction,
AccessControlContext) or Subject.doAsPrivileged(Subject, Privileged-
ExceptionAction, AccessControlContext). In cases where doAsPrivileged()
is called with a PrivilegedExceptionAction parameter, if the run()
method throws a checked exception, it will wrap it inside Privileged-
ActionException before throwing it.

4 Check access—The methods that need to ensure authorized access must
check the subject’s credentials by calling the AccessController.check-
Permission() method and passing it a permission object that contains
the required permissions. If the user doesn’t have sufficient permissions,
this method throws an unchecked AccessControlException exception.

5 Create a system-level access control policy—At the system level, you write a
policy file that grants to a set of subjects permissions to certain opera-
tions. The AccessController.checkPermission() method indirectly uses
this policy file to grant access only to those operations that are allowed
by the accessing subject’s credentials and permissions.

10.5.2 Developing the solution

Now that we’ve looked at the changes needed in the system to implement
authorization, let’s look at the modifications we need to make in the banking
example. In listing 10.11, we define a simple permission class, BankingPermis-
sion. The name string passed in its constructor defines the permissions. We will
later map these strings in a security policy file to allow only certain users to
access certain functionality.

package banking;

import java.security.*;

public final class BankingPermission extends BasicPermission {
 public BankingPermission(String name) {
 super(name);
 }

 public BankingPermission(String name, String actions) {
 super(name, actions);
 }
}

Listing 10.11 BankingPermission.java: permission class for banking system authorization

Authorization: the conventional way 339
The class BankingPermission defines two constructors to match those in the base
BasicPermission class. The actions parameter in the second constructor is
unused and exists only to instantiate the permission object from a policy file. To
learn more, refer to the JDK documentation.

 Now let’s modify the AccountSimpleImpl class to check permission in each of
its public methods. Each change is simply a call to AccessController.check-
Permission() with a BankingPermission object as an argument. Each Banking-
Permission needs a name argument to specify the kind of permission sought. We
employ a simple scheme that uses the method name itself as the permission
string. Listing 10.12 shows the implementation of AccountSimpleImpl where
each method checks the permission before executing its core logic.

package banking;

import java.security.AccessController;

public class AccountSimpleImpl implements Account {
 private int _accountNumber;
 private float _balance;

 public AccountSimpleImpl(int accountNumber) {
 _accountNumber = accountNumber;
 }

 public int getAccountNumber() {
 AccessController.checkPermission(
 new BankingPermission("getAccountNumber"));

 ...

 }

 public void credit(float amount) {
 AccessController.checkPermission(
 new BankingPermission("credit"));

 ...

 }

 public void debit(float amount)
 throws InsufficientBalanceException {
 AccessController.checkPermission(
 new BankingPermission("debit"));

 ...

 }

Listing 10.12 AccountSimpleImpl.java: the conventional way

340 CHAPTER 10
Authentication and authorization
 public float getBalance() {
 AccessController.checkPermission(
 new BankingPermission("getBalance"));

 ...

 }

 ... implementation for private methods ...
}

We now have an Account implementation that performs access checks for each
public operation. We must make similar changes to InterAccountTransferSystem
(we’ll omit that discussion here for brevity’s sake). Next, let’s look at the changes
needed in our test program (listing 10.13) that invokes these operations.

package banking;

import java.security.*;
import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;

import com.sun.security.auth.callback.TextCallbackHandler;

public class Test {
 public static void main(String[] args) throws Exception {
 LoginContext lc
 = new LoginContext("Sample",
 new TextCallbackHandler());
 lc.login();

 final Account account1 = new AccountSimpleImpl(1);
 final Account account2 = new AccountSimpleImpl(2);

 Subject authenticatedSubject = lc.getSubject();

 Subject
 .doAsPrivileged(authenticatedSubject,
 new PrivilegedAction() {
 public Object run() {
 account1.credit(300);
 return null;
 }}, null);
 try {
 Subject
 .doAsPrivileged(authenticatedSubject,
 new PrivilegedExceptionAction() {

Listing 10.13 Test.java: the conventional way

Authorization: the conventional way 341
 public Object run() throws Exception {
 account1.debit(200);
 return null;
 }}, null);
 } catch (PrivilegedActionException ex) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)ex.getCause();
 }
 }

 try {
 Subject
 .doAsPrivileged(authenticatedSubject,
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 InterAccountTransferSystem
 .transfer(account1, account2,
 100);
 return null;
 }}, null);
 } catch (PrivilegedActionException ex) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)ex.getCause();
 }
 }

 try {
 Subject
 .doAsPrivileged(authenticatedSubject,
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 InterAccountTransferSystem
 .transfer(account1, account2,
 100);
 return null;
 }}, null);
 } catch (PrivilegedActionException ex) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)ex.getCause();
 }
 }
 }
}

Clearly, we’ve had to use too much code. For each operation needing access con-
trol, we create an anonymous class extending either PrivilegedExceptionAction

342 CHAPTER 10
Authentication and authorization
or PrivilegedAction, based on whether the operation can throw a checked
exception. The run() method of each anonymous class simply calls the operation
under consideration.

 We put the calls to the methods that are routed through a PrivilegedException-
Action object in a try/catch block. In the catch block, we check to see if the cause
for the exception is an InsufficientBalanceException. If so, we throw that excep-
tion because the caller of the business method would expect it to be Insufficient-
BalanceException and not PrivilegedExceptionAction. Please refer to the JDK
documentation for PrivilegedExceptionAction for more details on how the
checked exceptions are handled differently than the runtime exceptions.

 While we use anonymous classes here, we could have used named classes as
well. Each named class would require a constructor taking all the parameters of
the method. It would then store those parameters as instance variables. Later,
while implementing the run() method, it would pass the stored instance vari-
ables to the method.

 We could have also combined all the operations into one action by creating a
single PrivilegedExceptionAction and routing all the actions through it. How-
ever, we did not do so in order to better mimic the real system, where not all the
operations that need authorization will be in one or two places. Further, combining
several methods into one action requires that you consider exception-handling
carefully. By routing the methods individually through the PrivilegedException-
Action class, you can handle an exception thrown by each method separately and
make the appropriate decisions. With the combined method, you will need to
handle the exceptions thrown by a set of methods together. While such an
arrangement may not always be a problem, you need to consider it anyway.

10.5.3 Testing the solution
Let’s see if the solution works. To do so, we add authorization logging to the
AuthLogging aspect, as shown in listing 10.14.

package banking;

import org.aspectj.lang.*;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;

import logging.*;

public aspect AuthLogging extends IndentedLogging {

Listing 10.14 AuthLogging.java: adding authorization logging

Authorization: the conventional way 343
 declare precedence: AuthLogging, *;

 public pointcut accountActivities()
 : call(void Account.credit(..))
 || call(void Account.debit(..))
 || call(* Account.getBalance(..))
 || call(void InterAccountTransferSystem.transfer(..));

 public pointcut authenticationActivities()
 : call(* LoginContext.login(..));

 public pointcut authorizationActivities()
 : call(* Subject.doAsPrivileged(..));

 public pointcut loggedOperations()
 : accountActivities()
 || authenticationActivities()
 || authorizationActivities();

 before() : loggedOperations() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("<" + sig.getName() + ">");
 }
}

The aspect in listing 10.14 modified the one in listing 10.8 to add a new point-
cut, authorizationActivities(), and include that pointcut in the loggedOpera-
tion() pointcut.

 In the BankingPermission class (listing 10.11), the constructor took an argu-
ment name that was a string defining the permissions for the system. We said that
we would later map name to a security policy file to allow only certain users to
access certain functionality. Let’s define that security policy file now. We want to
permit testUser to be able to carry out all the operations in the banking system.
Listing 10.15 shows the policy file that grants testUser the permissions to access
all the operations (credit, debit, getBalance, and transfer).

grant Principal sample.principal.SamplePrincipal "testUser" {
 permission banking.BankingPermission "credit";
 permission banking.BankingPermission "debit";
 permission banking.BankingPermission "getBalance";
 permission banking.BankingPermission "transfer";
};

Listing 10.15 security.policy: the policy file for authorization

344 CHAPTER 10
Authentication and authorization
When we compile and run the test program, it not only asks for a name and
password, but also executes all the operations that have been authorized through
Subject.doAsPrivileged():

> ajc banking*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 -Djava.security.policy=security.policy banking.Test

<login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
<doAsPrivileged>
 <credit>
<doAsPrivileged>
 <debit>
<doAsPrivileged>
 <transfer>
 <credit>
 <debit>
<doAsPrivileged>
 <transfer>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
... the rest of call stack

The output shows that each method that needs authorization is called in the con-
text of the doAsPrivileged() method. We will compare this output to one using
AspectJ-based authorization in section 10.6; we expect them to be identical.

 If you want to learn more about JAAS, modify the security policy file to see
the effect of different permissions. This will allow you to see how JAAS prevents
certain users from accessing a set of operations while allowing others to access
those operations.

 Now extend this problem to a real system and try to answer the following
question: Which operations in your system need to be authenticated/authorized?
The answer will not be easy to come by. You will have to examine all the modules
and create a list of operations that perform access control checks. This task is
laborious and error-prone.

➥

➥

➥

Authorization: the conventional way 345
10.5.4 Issues with the conventional solution

Let’s summarize the problems posed by the conventional object-oriented solution:
■ Scattering of decisions—The decision for operations to be checked against

permissions is scattered throughout the system, and therefore any modifi-
cations to it will cause invasive changes.

■ Difficulty of determining access-controlled operations—Consider the same prob-
lem of deciding if an operation needs to perform authorization checks
from the business component developer’s point of view. Since deciding
whether an operation needs authorization depends on the system using
the components, it is even harder to identify these operations in compo-
nents than in system-specific classes.

■ The need to write a class for each access-controlled operation—For each simple
operation, you must write a named or anonymous class carrying out the
desired operation.

■ Incoherent system behavior—The implementation for authorizing a method
is separated into two parts: the callee and the caller. The callee side uses
AccessController.checkPermission() to check the permissions (as in list-
ing 10.12), whereas the caller side uses Subject.doAsPrivileged() to exe-
cute the operation on a subject’s behalf. Failure to check permissions on
the callee side may allow unauthorized subjects to access your system. On
the caller side, if you forget to use Subject.doAsPrivileged(), your opera-
tion will fail even if the user accessing the operation has the proper set of
permissions. If you don’t find and fix the problem during a code review or
a testing phase, it will pop up after the deployment, potentially causing a
major loss of business functionality.

■ Difficult evolution—Any change in authorization operations means making
changes in every place the call is made. Any such change will require that the
entire test be run through again, increasing the cost of the change.

This list demonstrates the sheer amount of code you will need to write. However,
the amount of code is not the biggest problem. Just examine the tangling of the
authorization code—it simply overwhelms the core logic. The conventional
methods force you to stuff the system-level authorization concern into every part
of the system. A utility wrapper can reduce the amount of code, but the funda-
mental problem of tangling remains unsolved.

346 CHAPTER 10
Authentication and authorization
10.6 Authorization: the AspectJ way

In extending the AspectJ solution to address authorization, we use the worker
object creation pattern described in chapter 8. As with authentication, AspectJ
enables you to add authorization to the system without changing the core imple-
mentation. In this section, we develop a reusable aspect that enables you to add
authorization to your system by simply writing a few lines for a subaspect.

10.6.1 Developing the solution

To recap, using JAAS to implement authorization involves routing the authorized
call through a class that implements either PrivilegedExceptionAction or
PrivilegedAction, depending on whether the operation throws checked excep-
tions. As you saw in section 10.5, the conventional solution requires the coding of
both classes implementing PrivilegedAction and their invocations. The worker
object creation pattern takes the pain out of this process. Without this pattern,
we would have to implement classes for each operation that needs authorization.
We could still use AspectJ to provide around advice to intercept each of the oper-
ations separately and to create and execute the corresponding, hand-written action
objects through Subject.doAsPrivileged(Subject, PrivilegedAction, AccessControl-
Context), or Subject.doAsPrivileged(Subject, PrivilegedExceptionAction, Access-
ControlContext). Now, with the use of a worker object creation pattern, instead
of writing a class for each operation that needs authorization, we simply write an
aspect that advises all corresponding join points of such operations to auto-
create worker classes and execute them through Subject.doAsPrivileged().

 The result is a real savings in the amount of code we have to write, since the
concern is modularized within just one aspect. Listing 10.16 shows the base
aspect that implements the authorization concern in addition to authentication.

package auth;

import org.aspectj.lang.JoinPoint;

import java.security.*;
import javax.security.auth.Subject;
import javax.security.auth.login.*;

import com.sun.security.auth.callback.TextCallbackHandler;

public abstract aspect AbstractAuthAspect {

Listing 10.16 AbstractAuthAspect.java: adding authorization capabilities

Authorization: the AspectJ way 347
 private Subject _authenticatedSubject;

 public abstract pointcut authOperations();

 before() : authOperations() {
 if(_authenticatedSubject != null) {
 return;
 }

 try {
 authenticate();
 } catch (LoginException ex) {
 throw new AuthenticationException(ex);
 }
 }

 public abstract Permission getPermission(
 JoinPoint.StaticPart joinPointStaticPart);

 Object around()
 : authOperations() && !cflowbelow(authOperations()) {
 try {
 return Subject
 .doAsPrivileged(_authenticatedSubject,
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 return proceed();
 }}, null);
 } catch (PrivilegedActionException ex) {
 throw new AuthorizationException(ex.getException());
 }
 }

 before() : authOperations() {
 AccessController.checkPermission(
 getPermission(thisJoinPointStaticPart));
 }

 private void authenticate() throws LoginException {
 LoginContext lc = new LoginContext("Sample",
 new TextCallbackHandler());
 lc.login();
 _authenticatedSubject = lc.getSubject();
 }

 public static class AuthenticationException
 extends RuntimeException {
 public AuthenticationException(Exception cause) {
 super(cause);
 }
 }

Pointcut for
operations
that need
authorization

 b

Method that
obtains the
needed
permissions

 c

Around advice
that creates and

executes the
worker object

 d

Permissions
checking

 e

348 CHAPTER 10
Authentication and authorization
 public static class AuthorizationException
 extends RuntimeException {
 public AuthorizationException(Exception cause) {
 super(cause);
 }
 }
}

This aspect routes every call that needs authorization through an anonymous
class implementing the PrivilegedExceptionAction interface. By inserting pro-
ceed() in the implemented run() method, we take care of wrapping all opera-
tions that require any type and number of arguments, as well as any type of
return value. This pattern saves us from writing a class for each operation that
needs authorization.

 Let’s examine the aspect in more detail:
The authOperations() abstract pointcut is identical to the one in the authentica-
tion solution we presented earlier. When we define the pointcut in the subaspect,
we will list all the operations that need authentication, which are the same as the
ones that need authorization. Later, toward the end of chapter, we show you a
simple modification you can use if you have to separate the list for operations
that need authentication from those that need authorization.
This abstract method allows the subaspects to define the permission needed for
the captured operation. It passes the static information about the captured join
point to the getPermission() method in case the permission depends on a class
and method for the operation.
This around advice first creates a worker object for the captured operation and then
executes it using Subject.doAsPrivileged() on behalf of the authenticated subject.
By using the && operator to combine the authOperations() pointcut with !cflowbe-
low(authOperations()), we ensure that the worker object is created only for the top-
level operations that need authorization. Note that we do not need to separately
route an operation if it is already in the control flow of another routed operation.
This before advice determines whether the caller of the method has sufficient
permissions. Note we did not put the logic to check permissions in the preceding
around advice. This is because we first need to create the worker object and pass
it to Subject.doAsPrivileged(); only then can we check for the permissions
called by the worker object.
AuthorizationException is simply a RuntimeException that wraps the original
exception.

Authorization
exception

 f

 b

 c

 d

 e

 f

Authorization: the AspectJ way 349
Notice how the two before advice and an around advice to the authOperations()
pointcut are lexically arranged. (Please refer to section 4.2.4 for more informa-
tion about how lexical ordering of advice in an aspect affects their precedence.)
This arrangement is critical for the correct functioning of this aspect. With this
arrangement the advice is executed as follows:

1 The first before advice is executed prior to executing the join point. This
advice performs the authentication, if needed, and obtains an authenti-
cated subject after authenticating.

2 The around advice is executed next. It creates a wrapper worker object and
invokes it using Subject.doAsPrivileged(). This results in calling the
original captured join point when the advice body encounters proceed().

3 The second before advice is executed just prior to proceeding with the
execution of the captured join point. Essentially, think of the before
advice as being called right before the proceed() method in the around
advice. This advice uses AccessController.checkPermission() to check
the permission needed.

In summary, by controlling the precedence, we ensure that authentication occurs
before authorization; we verify the identity of the subject before we check the
permissions for that subject.

 To enable authorization in our banking system, we must modify Banking-
AuthAspect to implement the abstract getPermission() method. This is all we
have to change in order to enable authorization—the reusable base aspect takes
care of all the complexities. Listing 10.17 shows BankingAuthAspect, which
enables authorization in our example banking system.

package banking;

import org.aspectj.lang.JoinPoint;

import java.security.Permission;

import auth.AbstractAuthAspect;

public aspect BankingAuthAspect extends AbstractAuthAspect {
 public pointcut authOperations()
 : execution(public * banking.Account.*(..))
 || execution(public * banking.InterAccountTransferSystem.*(..));

Listing 10.17 BankingAuthAspect.java: adding authorization capabilities

350 CHAPTER 10
Authentication and authorization
 public Permission getPermission(
 JoinPoint.StaticPart joinPointStaticPart) {
 return new BankingPermission(
 joinPointStaticPart.getSignature().getName());
 }
}

In this concrete aspect, we add a definition for the getPermission() method. In
our implementation, we return a new BankingPermission class with the name of
the method obtained from the join point’s static information as the permission
identification string. This permission scheme is identical to the one we used for
the conventional solution in listing 10.15.

10.6.2 Testing the solution

When we compile all the classes and aspects and run the test program, we see
output similar to the following:

> ajc banking*.java auth*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 -Djava.security.policy=security.policy banking.Test

<credit>
 <login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
 <doAsPrivileged>
<debit>
 <doAsPrivileged>
<transfer>
 <doAsPrivileged>
 <credit>
 <debit>
<transfer>
 <doAsPrivileged>
 <credit>
 <debit>
Exception in thread "main"

 auth.AbstractAuthAspect$AuthorizationException:
 banking.InsufficientBalanceException: Total balance not sufficient

Note that the output is nearly identical to that in section 10.5.4. However, there
are a few differences. The first difference is that the login occurs in a different

➥

➥

➥
➥

Authorization: the AspectJ way 351
place due to the just-in-time policy. Second, the log for each operation occurs
before the log for the doPrivileged() method that routed the operation. This
is because the logging aspect has a higher precedence, and its before advice is
applied before the around advice in AbstractAuthAspect. Refer to chapter 4,
section 4.2, for details on aspect precedence rules. Also note that the type of
exception thrown by the last transfer() call is not the expected Insufficient-
BalanceException. This behavior is due to the fact that any exception thrown by
the PrivilegedExceptionAction.run() method is wrapped in an Authorization-
Exception. Since we cannot throw a checked exception of a type other than that
declared by the method itself, we wrap the exception in a runtime exception
AbstractAuthAspect.AuthorizationException.

 We can remedy the situation by simply adding one more aspect, modeled
after the exception introduction pattern in chapter 8, to the system. This aspect’s
job is to catch the AbstractAuthAspect.AuthorizationException thrown by any
method that could throw an InsufficientBalanceException and check the cause
of the thrown exception. If the cause’s type is InsufficientBalanceException, it
then throws the cause exception instead of AuthorizationException. Listing 10.18
shows the implementation of this logic in an aspect.

package banking;

import auth.AbstractAuthAspect;

public aspect PreserveCheckedException {
 after() throwing(AbstractAuthAspect.AuthorizationException ex)
 throws InsufficientBalanceException
 : call(* banking..*.*(..)
 throws InsufficientBalanceException) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)cause;
 }
 throw ex;
 }
}

In this case, the only exception that we need to preserve is InsufficientBalance-
Exception. Now when we compile all the classes and aspects, we see that the
checked exception is preserved:

Listing 10.18 PreserveCheckedException.java: aspect preserving checked exceptions

352 CHAPTER 10
Authentication and authorization
> ajc banking*.java auth*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 -Djava.security.policy=security.policy banking.Test

<credit>
 <login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
 <doAsPrivileged>
<debit>
 <doAsPrivileged>
<transfer>
 <doAsPrivileged>
 <credit>
 <debit>
<transfer>
 <doAsPrivileged>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:
Total balance not sufficient
... the rest of call stack

We now have an aspect-oriented solution to authentication and authorization for
the banking system. The most beneficial characteristics of this solution are:

■ You can add functionality without touching even a single core source file.
■ The specifications are captured in a single aspect.
■ The base aspect that implements most of the functionality is reusable.

You now should be able to write a simple subaspect of this reusable aspect to get
a comprehensive access-controlled system.

 Now that we have a modularized implementation of authorization concerns,
we can quickly react to any changes in the authorization requirements. For exam-
ple, consider data-driven authorization in a banking system where the creden-
tials needed for performing the fee-waiving operations depend on the amount
involved. We can implement this requirement easily by capturing the join points
corresponding to the fee-waiving operations and collecting the waived amount
as a context. We then advise such join points to check the credentials based on
the amount. Consider another requirement: providing the opportunity for re-
login with a different identity upon determining that the credentials with the
current identity are not sufficient to perform an operation. We can easily imple-

➥

➥

Fine-tuning the solution 353
ment this functionality by modifying the authorization advice to present the user
with a login opportunity upon authorization failure. In a nutshell, the ease of
implementation brought forth by AspectJ-based authorization makes it practical
to implement useful variations of the core functionality.

10.7 Fine-tuning the solution

In this section, we examine a few finer points that you may want to consider
when customizing the access control solution for your system.

10.7.1 Using multiple subaspects

In most common situations, the list of operations that need authentication and
authorization is a system-wide consideration, similar to the solution in this chap-
ter. However, suppose each subsystem must control its list of operations. In this
case, you need multiple subaspects, one for each subsystem, each specifying
operations in the associated subsystem. For example, the following aspect
extends AbstractAuthAspect to authenticate all the public operations in the
com.mycompany.secretprocessing package:

public aspect SecretProcessingAuthenticationAspect {
 extends AbstractAuthAspect {
 public pointcut authOperations() :
 execution(public * com.mycompany.secretprocessing.*(..));
}

Using this scheme, you can include multiple subaspects in a system, each specify-
ing a list of join points needing authentication and authorization. Then the
advice in the base aspect applies to join points captured by the pointcut in each
subaspect. This is similar to the participant pattern, in which each class controls
the subaspect that defines the pointcuts for the class. However, in this case the
subaspect defines the pointcuts for a subsystem, which results in greater flexibil-
ity and ease of maintenance for the owners of the subsystem.

 Remember that if you use multiple subaspects, the system will create an
instance of each of the concrete subaspects that share the common base aspect. If
you store the authenticated subject as an instance variable of the base aspect, as
we did in the solution in this chapter, the user will be forced to log in multiple
times—upon reaching the first join point captured by the pointcut in each con-
crete subaspect. You will need to store the authenticated subject in a different
way. For instance, if your authentication has program scope, you may want to
keep the authenticated subject as a static variable inside the AbstractAuthAspect.

354 CHAPTER 10
Authentication and authorization
10.7.2 Separating authentication and authorization

In the chapter’s solution, we used a single pointcut to capture both authoriza-
tion and authentication join points. While this scheme is fine in most cases,
there are situations when you need to separate these join points. For example,
consider a requirement for up-front login. You need the method corresponding
to the main entry in the program to be authenticated but not necessarily autho-
rized. Satisfying such a requirement is quite simple. First you need two point-
cuts: one for authentication and another for authorization. Then you must
modify the aspect we developed to separate out the authentication advice to
apply to the authentication pointcut, and you will have to modify the authoriza-
tion advice in a similar way.

 What happens if your authorization join point is encountered prior to an
authentication one? The solution depends on your system’s requirements. One
solution is to fall back to just-in-time authentication, thus performing authenti-
cation prior to the execution of the first method that needs to check authoriza-
tion (if the user was never authenticated). The easiest way to achieve this would
be to include an authorization pointcut in an authentication pointcut as well:

pointcut authenticatedOperations()
 : primaryAuthenticatedOperations() || authorizedOperations();

The other possibility is to simply throw an exception if an authorization join
point is reached before the user is authenticated. Checking to see if the
_authenticatedSubject is null in the authorization advice may be the easiest
option. Both the choices can be implemented easily, and the choice you make
depends on your system requirements.

10.8 Summary

The JAAS API provides a standard way to introduce authentication and authori-
zation into your system without requiring application developers to know the
complex implementation details. The conventional JAAS-based solution suffers
from code bloat and poses the problem of having no single place to list or
enforce authentication and authorization decisions. On a large system, this
makes it almost impossible to figure out which operations are being authorized.
Further, it separates the implementation on the caller side from the callee side.
Failing to add an authentication check on the caller side leads to making
resources unavailable to otherwise qualified users. Failing to add an authoriza-
tion check on the callee side, on the other hand, results in potential unautho-
rized access to the operations, compromising the system’s integrity.

Summary 355
 The beauty of an AspectJ solution for authentication and authorization lies in
modularizing the access control implementation into a few modules, separate
from the core system logic. You still use JAAS to perform the core part of authen-
tication and authorization, but you no longer need to have calls to its API all over
the system. By simply including a few aspects and specifying operations that
require access control, you complete the implementation. If you have to add or
remove operations under access control, you just change the list of operations
needing such control—no change is required to the core parts of the system. AOP
and AspectJ make authentication and authorization not only easy to implement
but also easy to evolve.

 By combining such aspects along with those in the rest of the book, you could
create an EJB-lite framework and benefit from improved control over the ser-
vices you need.

11Transaction management
This chapter covers
■ Conventional transaction management
■ AspectJ-based transaction management

using JDBC
■ AspectJ-based transaction management using JTA
356

Transaction management 357
Consider the shopping cart example from chapter 5. When we add an item to the
cart, we remove it from inventory. What would happen if the second operation
failed? The system would be in an inconsistent state, with the same item counted as
being in the shopping cart and as part of inventory.

 To prevent this undesirable situation, we can execute both operations within a
transaction. A transaction defines an atomic unit of work that ensures the system
remains in a consistent state before and after its execution. Atomicity, consistency,
isolation, and durability (ACID) are considered the four properties of a transaction.
In this chapter, we focus on the first property—atomicity—because it is the most
important and the hardest to achieve. Atomicity ensures that either all the oper-
ations within a transaction succeed as a single unit, or if one of the constituent
operations fails, the system aborts the whole sequence of updates and rolls back
any prior updates. If you want to read more on this topic, you can go to almost
any JDBC or J2EE book (although the concept isn’t limited to these areas).

 Transaction management is a crosscutting concern (by now, you probably saw
it coming!). The operations under transaction control span multiple modules.
Even in the simple case of the shopping cart example in chapter 5, the concern
is spread across three classes: ShoppingCart, Inventory, and ShoppingCartOperator.
In a real system, such operations touch many more classes and packages. The
non-AOP solution causes the transaction management implementation to be
integrated into all those modules, creating the usual set of problems associated
with a lack of modularization of crosscutting concerns.

 The EJB application framework offers an elaborate and elegant system for
transaction management. Transaction support for bean operations is expressed
in a declarative form, in the deployment descriptor, separate from the core oper-
ation. This arrangement is similar in spirit to AOP—separation of crosscutting
concerns. But in many cases, you do not have the advantage of this built-in sup-
port. Using AspectJ in this situation extends the spirit of declarative transaction
management to all your transaction management needs.

 In this chapter, we develop an aspect-oriented solution for transaction man-
agement in a simple JDBC-based system. This first version provides the essential
concepts, and we will refine it as we go. We use just the basic commit and rollback
functionality available with JDBC connections instead of using Java Transaction
API (JTA) and transaction-aware connection objects. The JTA makes it possible to
manage transactions that span multiple resources. Once you are familiar with the
basic idea behind modularizing transaction management using AspectJ for a
simple JDBC-based system, we briefly look at a template for a JTA-based transac-
tion management system using AspectJ.

358 CHAPTER 11
Transaction management
11.1 Example: a banking system with persistence

To illustrate the problem of transaction management and AspectJ-based solu-
tions, let’s develop a part of a banking system that must use transaction manage-
ment. First, we will create the system without transaction management so that we
can see which actions need to be within a transaction. We will also develop a log-
ging aspect that allows us to observe the activities taking place.

11.1.1 Implementing the core concern

In this section, we modify the banking system example introduced in chapter 10
to use JDBC for database persistence. Figure 11.1 shows our example system.

 The AccountJDBCImpl class is a concrete implementation of the Account inter-
face from listing 10.1. Besides implementing all the methods specified in the
interface, it contains a private method for setting balances. The InterAccount-
TransferSystem class, from listing 10.4, contains a single method for transferring
an amount from one account to the other.

 Before we look at the JDBC implementation of this interface, let’s build the
helper class (listing 11.1) for creating database connections that we will use in
our implementation.

package banking;

import java.sql.*;

Listing 11.1 DatabaseHelper.java

Figure 11.1 An overview of our banking example. The DatabaseHelper class is a result of
refactoring to avoid duplicated code for creating a connection.

Example: a banking system with persistence 359
public class DatabaseHelper {
 static {
 try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 } catch (Exception ex) {
 // ignore...
 }
 }

 public static Connection getConnection() throws SQLException {
 String url = "jdbc:odbc:bank";
 String user = "user1";
 String password = "password1";
 Connection connection
 = DriverManager.getConnection(url, user, password);
 connection.setAutoCommit(true);
 return connection;
 }
}

The DatabaseHelper class contains a single method, getConnection(), that
returns a connection to the database. The auto-commit mode will be switched on
for the connection, which means we won’t have to programmatically commit the
updates to the database—each one will be committed automatically. However,
enabling the auto-commit mode also means we won’t be able to make multiple
updates within a transaction; if one of the updates in an operation fails, all the
updates that succeeded prior to the failure will still be committed. Note that we
enable auto-commit mode only to keep the base solution simple, since it does
not involve transaction management.

 Let’s write a simple JDBC implementation of the Account interface.1 The class
in listing 11.2 directly manipulates the database.

package banking;

import java.sql.*;

public class AccountJDBCImpl implements Account {
 private int _accountNumber;

1 The downloadable source code provides detailed information on setting up the database tables and
changes needed to make this program work with various databases.

Listing 11.2 AccountJDBCImpl.java

360 CHAPTER 11
Transaction management
 public AccountJDBCImpl(int accountNumber) {
 _accountNumber = accountNumber;
 }

 public int getAccountNumber() {
 return _accountNumber;
 }

 public void credit(float amount) {
 float updatedBalance = getBalance() + amount;
 setBalance(updatedBalance);
 }

 public void debit(float amount)
 throws InsufficientBalanceException {
 float balance = getBalance();
 if (balance < amount) {
 throw new InsufficientBalanceException(
 "Total balance not sufficient");
 } else {
 float updatedBalance = balance - amount;
 setBalance(updatedBalance);
 }
 }

 public float getBalance() {
 Connection conn = DatabaseHelper.getConnection();
 Statement stmt = conn.createStatement();

 ResultSet rs
 = stmt.executeQuery("select balance from accounts "
 + "where accountNumber = "
 + _accountNumber);
 rs.next();
 float balance = rs.getFloat(1);
 stmt.close();
 conn.close();
 return balance;
 }

 private void setBalance(float balance) throws SQLException {
 Connection conn = DatabaseHelper.getConnection();
 Statement stmt = conn.createStatement();
 stmt.executeUpdate("update accounts set balance = "
 + balance +
 " where accountNumber = "
 + _accountNumber);
 stmt.close();
 conn.close();
 }

Example: a banking system with persistence 361
 private static aspect SoftenSQLException {
 declare soft : SQLException
 : execution(* Account.*(..))
 && within(AccountJDBCImpl);
 }
}

Each method creates a new database connection. While this behavior has per-
formance implications, it is a correct implementation from each method’s lim-
ited perspective.

NOTE We use the nested SoftenSQLException aspect to soften the SQLExcep-
tion thrown by the Account class’s business methods. Because a SQL-
Exception that may be thrown by the JDBC operations does not make
sense from the business method’s point of view, and because throwing
such an exception requires that the base Account’s methods must declare
it, we use this aspect to soften any SQLException thrown. Notice the def-
inition of the pointcut used in declare soft: By using only Account.*(..)
instead of AccountJDBCImpl.*(..), we soften the exception only if it is
thrown by business methods declared in the Account interface. This
means, for example, that the aspect will not soften a SQLException
thrown by the setBalance() method, which will force the methods that
call setBalance() to deal with the exception. The code && within(Ac-
countJDBCImpl) ensures that the exception is softened only when it is
thrown by the methods of AccountJDBCImpl, and not by methods in any
other potential implementations of the Account interface. When we limit
the exception softening in this way, the compiler still forces the callers of
methods in other implementations of the Account interface to either
handle the exception or declare that they will throw it. For more details of
exception softening, see section 4.4 in chapter 4.

A superior alternative to exception softening would have been to use
the exception introduction pattern discussed in chapter 8. The use of the
pattern would enable an easier retrieval of SQLException by a caller at a
higher level. However, we chose the exception-softening approach for
simplicity, since we want to focus on the core concepts of this chapter.

So far we have worked with methods like credit() that contain simple transac-
tions. Methods like these do not need to be concerned with updates to the data-
base that occur in other methods. However, we must also handle nested
transactions, in which the updates issued to the database from within the method

362 CHAPTER 11
Transaction management
have to be coordinated with database updates from other methods. Before we
delve into the implementation of transaction management, we will use InterAc-
countTransferSystem (from listing 10.4) to help us understand nested transac-
tions. The InterAccountTransferSystem class consists of just one method that
allows us to transfer money from one account to another. We call this a nested
transaction because transactional integrity requires that both the individual oper-
ations invoked—credit() and debit()—succeed or the changes to the database
are rolled back. For example, when the credit() method is called directly, it
commits its changes before returning. Yet the same method called from Inter-
AccountTransferSystem.transfer() must not commit the changes in the
credit() method, but rather wait for successful completion of the debit()
method that follows. Because the transactions taking place inside the credit()
and debit() methods are nested inside the transaction of the InterAccount-
TransferSystem.transfer() method, they are called nested transactions.

11.1.2 Setting up the test scenario
To test the solution, let’s use the simple Test class in listing 11.3, which is nearly
identical to one developed in chapter 10 (listing 10.5) except that we instantiate
AccountJDBCImpl instead of AccountSimpleImpl. We will use the same scenario
throughout this chapter.

package banking;

public class Test {
 public static void main(String[] args) throws Exception {
 Account account1 = new AccountJDBCImpl(1);
 Account account2 = new AccountJDBCImpl(2);

 account1.credit(300);
 account1.debit(200);

 InterAccountTransferSystem.transfer(account1, account2, 100);
 InterAccountTransferSystem.transfer(account1, account2, 100);
 }
}

The first two methods, credit() and debit(), trigger database updates. The first
transfer() method performs the operation with the nested transaction require-
ments. Assuming that both accounts start with a zero balance, the last transfer
operation in the test program will throw an exception.

Listing 11.3 Test.java: a test scenario for the transaction integrity problem

First transaction

Second transaction Nested
transaction

Transaction that
should be aborted

Example: a banking system with persistence 363
 Let’s write a logging aspect, shown in listing 11.4, so we can see if the exam-
ple works as expected.

package banking;

import java.sql.*;
import org.aspectj.lang.*;
import logging.*;

public aspect TransactionLogging extends IndentedLogging {
 declare precedence: TransactionLogging, *;

 public pointcut accountActivities()
 : call(void Account.credit(..))
 || call(void Account.debit(..))
 || call(void InterAccountTransferSystem.transfer(..));

 public pointcut connectionActivities(Connection conn)
 : (call(* Connection.commit(..))
 || call(* Connection.rollback(..)))
 && target(conn);

 public pointcut updateActivities(Statement stmt)
 : call(* Statement.executeUpdate(..))
 && target(stmt);

 public pointcut loggedOperations()
 : accountActivities()
 || connectionActivities(Connection)
 || updateActivities(Statement);

 before() : accountActivities() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("[" + sig.getName() + "]");
 }

 before(Connection conn) : connectionActivities(conn) {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("[" + sig.getName() + "] " + conn);
 }

 before(Statement stmt) throws SQLException
 : updateActivities(stmt) {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("[" + sig.getName()
 + "] " + stmt.getConnection());
 }
}

Listing 11.4 The logging aspect

364 CHAPTER 11
Transaction management
The aspect in listing 11.4 logs account activities, such as credits and debits; con-
nection activities, such as committing and rolling back; and database update
activities. We extend the IndentedLogging aspect (from chapter 5) to give an
indentation effect to the log output; this makes for a more readable log. The
base aspect IndentedLogging contains an abstract pointcut, loggedOperations(),
and the subaspect will provide a definition for it. We define the loggedOperations()
pointcut to capture all the join points captured by the accountActivities(), con-
nectionActivities(), and updateActivities() pointcuts.

 When we compile all the classes and aspects (including the log aspects) and
run the program, we see output similar to this:

> ajc banking*.java logging*.java
> java banking.Test
[credit]
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@117a8bd
[debit]
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@867e89
[transfer]
 [credit]
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@e86da0
 [debit]
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@291aff
[transfer]
 [credit]
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@13582d
 [debit]
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
...more call stack

Now that we have our basic banking example, let’s apply transaction manage-
ment to it. First, we will examine the conventional approach, and then we will
explain the AspectJ solutions.

11.2 The conventional solution

In this section, we take a brief look at conventional ways to implement transac-
tion management for our previous example. This discussion will not only give
you a better grasp of the problem but will also help you understand the AspectJ-
based solution described in the next section. In the end, both the conventional
and the AspectJ-based system must have identical behavior.

 Let’s see what we need to do to implement transaction management in the
banking example we created in section 11.1. From the perspective of transaction

➥

The conventional solution 365
integrity, the transfer() method should ensure that both the credit() and
debit() methods complete successfully before committing the changes. If one
database update fails, the transaction manager must roll back all the updates
that have already occurred. However, this is not happening in our example. The
DatabaseHelper.getConnection() method creates a new connection for each
database operation and enables the auto-commit mode of each connection; the
result is that each operation gets committed immediately. This means that if the
second update fails, the result of the first update is still in effect.

 Fixing this problem will require us to:

1 Switch off the auto-commit mode.
2 Use the same connection object for all the database updates.
3 Commit the pending updates once all the operations succeed; otherwise,

if any of the operations fail, we must roll back all the updates.

Satisfying the first requirement is a simple matter of modifying the Database-
Helper class to not switch on the auto-commit mode. For the remaining two
requirements, as you’ll see in the following section, there are a couple of ways
you can implement them.

11.2.1 Using the same connection object
The two general ways to manage simple transactions using conventional tech-
niques are:

■ Passing an extra argument to each method that corresponds to the connec-
tion object

■ Using thread-specific storage

We will examine each of these solutions briefly.

Passing the connection object around
The transfer() method calls two methods within its body. Both methods must
complete for the transaction to be successful. Let’s take another look at the
transfer() method in the InterAccountTransferSystem class from listing 10.4:

 public static void transfer(Account from, Account to,
 float amount)
 throws InsufficientBalanceException {
 to.credit(amount);
 from.debit(amount);
 }

366 CHAPTER 11
Transaction management
We need to ensure that both the credit() and debit() methods use the same
connection object. We also need to ensure that we commit the connection only
after the successful completion of all the suboperations. To achieve this goal, we
make the following modifications:

1 Create a new connection object in the transfer() method. (Be sure to mod-
ify DatabaseHelper to switch off the auto-commit mode for the connection).

2 Pass the connection object as an additional argument to both credit()
and debit().

3 Modify both methods to use this connection object instead of creating a
new one.

4 Remove commit operations performed inside any suboperations.
5 Commit the connection object after successful completion of all updates;

otherwise, roll back the connection.
6 Close the connection.

The following snippet shows the resulting transfer() method’s implementation.
Note that we assume that we soften the SQLExceptions thrown by commit(), roll-
back(), and close():

 public static void transfer(Account from, Account to,
 float amount)
 throws InsufficientBalanceException {
 Connection conn = DatabaseHelper.getConnection();
 conn.setAutoCommit(false);

 try {
 to.credit(amount, conn);
 from.debit(amount, conn);
 conn.commit();
 } catch (Exception ex) {
 conn.rollback();
 // log exception etc.
 } finally {
 conn.close();
 }
 }

We will need to modify the implementation of credit() and debit() as well to
use the supplied connection object instead of creating a new one.

 The problem with the scheme of passing the connection object is its sheer
invasiveness. Even in the simple case of the transfer() method, you must mod-
ify three methods to support transaction management.

The conventional solution 367
Using thread-specific storage
An alternative to passing around the connection object as an extra argument is
to use thread-specific storage, which is provided by ThreadLocal.2 We have to
modify DatabaseHelper in two ways. First, add a static final ThreadLocal mem-
ber that wraps a connection object. Second, modify DatabaseHelper.getConnec-
tion() to attempt to first obtain a connection object from this thread-local
member. If getConnection() succeeds, it returns the thread-specific connection
instead of creating a new one. Otherwise, it creates a new connection and sets it
into the thread-local member. Of course, for this solution to work, it is necessary
that every module use DatabaseHelper to obtain a database connection.

 This solution is well modularized in one class and one method, and if propa-
gating the connection was the sole issue, we would not need an AspectJ-based
solution. Ultimately, our goal is to modularize the concern’s implementation—
whether we use AspectJ is a secondary consideration. However, as you will see in
section 11.2.2, we should also be concerned with performing commits only in the
top-level operation, which is the method that initiates all the database updates.

11.2.2 Committing at the top level only

So far, we have dealt with the issue of using the same connection object for all the
database updates inside a transaction. We now have to ensure that within nested
transactions, only the top-level operations perform a commit.

 Think about the requirement of committing connections only after the success-
ful completion of all the database updates that are in methods called by the “top-
level” method. The fundamental problem here is that “top-level” is a perspective-
dependent concept. A method by itself does not have a property of top-levelness.
For instance, both credit() and debit() can be considered top-level methods
when they are called by themselves. Their success does not depend on the success
of any other method. But debit() is also called by InterAccountTransferSystem,
and in a transfer of funds, it cannot succeed unless credit() succeeds as well.
Thus, credit() and debit() are both nested inside InterAccountTransferSystem
and are dependent on each other. This means that determining who should be
responsible for committing the transaction becomes a complex decision.

 One solution is to use an extra argument or thread-local variable indicating
the call depth. You increment the call depth as you enter a method and decre-
ment before exiting each method. At the end of each method with the transaction

2 The ThreadLocal class supports storing thread-specific data. For details, refer to the J2SE API documentation.

368 CHAPTER 11
Transaction management
requirement, you can check if the call depth is zero (indicating the top-level
method) and only then proceed with the commit. The result is an implementa-
tion that requires you to modify every method dealing with database updates—a
cumbersome and error-prone process.

 In summary, conventional solutions have two disadvantages:

1 The scattering of transaction management code in multiple methods in
multiple modules, making a large part of the system explicitly aware of
transaction management issues

2 The tangling of business logic, such as transferring amounts, with imple-
mentation issues related purely to transaction management

11.3 Developing a simple AspectJ-based solution

Now that we have looked at conventional solutions and their inherent limita-
tions, we are ready to examine aspect-oriented solutions to the same problem. In
this section, we examine an AspectJ-based way of introducing transaction man-
agement in the banking example.

11.3.1 Implementing the JDBC transaction aspect

Before delving into the implementation details, let’s first look at the require-
ments of the AspectJ solution at a higher level:

1 All the updates in an operation with a transaction requirement must use
a single connection object that contains the transaction state. This implies
that while in the control flow of a method that needs transaction man-
agement, once a connection is created, all the subsequent updates in that
control flow must use the same connection object. In other words, the
connection object forms the context for the operations.

2 All the updates must be committed when the top-level operation com-
pletes successfully. If any update fails or if any business methods throw an
exception, all the updates on the connection objects must be rolled back.

3 A non-core requirement is to create a reusable solution. Because you will
likely need transaction management for JDBC-based systems in multiple
projects, developing a reusable solution saves the subsequent develop-
ment cost.

We can transform the above requirements into an aspect as follows:

Developing a simple AspectJ-based solution 369
1 To make the implementation reusable, we create an abstract aspect that
implements the bulk of the logic. Any subsystem that needs to introduce
transaction management simply has to write a subaspect that provides a
definition for all abstract pointcuts in the aspect.

2 To let the subaspects define the operations that need transaction man-
agement, we include an abstract pointcut for which a concrete subaspect
must provide a definition.

3 To capture the top-level operation, we define a pointcut that captures
operations not already in the control flow of another transacted operation.

4 To check the success of all operations in a transaction, we need a means
of communicating the failure of an operation and a way to check for such
failures. We define the success criterion as the execution of all the opera-
tions without any exceptions being thrown. We can detect the failure con-
dition by providing an around advice to the top-level operation that
proceeds with the captured operation in a try/catch block; the execution
of the catch block indicates a failure.

5 To ensure the use of the same connection object for all the updates in a
transaction, we advise the join point that creates the connection in the
control-flow transaction. The first time a connection is needed in a trans-
action, we proceed with the captured operation, obtain the connection,
and store it in an instance variable inside the aspect. Then for all subse-
quent attempts to obtain a connection object, the advice simply returns
the stored connection, bypassing the captured operation. We also associ-
ate the aspect with the control flow of the top-level operations. Since the
aspect stores the connection object used for all updates, the aspect
instance also serves as the transaction context that exists for the duration
of the transaction.

6 To accommodate the various connection-creation methods, such as using
a helper class or resource pooling, we define an abstract pointcut corre-
sponding to the creation of the connection. All concrete subaspects will
need to define this pointcut appropriately.

Figure 11.2 illustrates how we put all these fragments into an aspect. The figure
shows that the JDBCTransactionAspect base aspect contains two abstract point-
cuts—transactedOperation() and obtainConnection()—and a concrete pointcut,
topLevelTransactedOperation(). The JDBCTransactionAspect is associated with the
topLevelTransactedOperation() pointcut using percflow association specification.

370 CHAPTER 11
Transaction management
The subaspect BankingTransactionAspect contains two concrete pointcuts that
provide definitions for the abstract pointcuts in the base aspect. Listing 11.5
shows the JDBCTransactionAspect that follows this structure.

package transaction.jdbc;

import java.sql.*;

public abstract aspect JDBCTransactionAspect
 percflow(topLevelTransactedOperation()) {

 private Connection _connection;

 protected abstract pointcut transactedOperation();

 protected abstract pointcut obtainConnection();

 protected pointcut topLevelTransactedOperation()
 : transactedOperation()
 && !cflowbelow(transactedOperation());

 Object around() : topLevelTransactedOperation() {
 Object operationResult;
 try {
 operationResult = proceed();
 if (_connection != null) {
 _connection.commit();

Listing 11.5 JDBCTransactionAspect.java

Figure 11.2
The transaction
management aspects for
the banking example. The
base abstract aspect is a
reusable aspect. For your
system, you need to write
a subaspect similar to
BankingTransaction-
Aspect.

Association with top-
level transaction
control flow

 b

Abstract
pointcuts

 c

Top-level
transaction

 d

 e

Developing a simple AspectJ-based solution 371
 }
 } catch (Exception ex) {
 if (_connection != null) {
 _connection.rollback();
 }
 throw new TransactionException(ex);
 } finally {
 if (_connection != null) {
 _connection.close();
 }
 }
 return operationResult;
 }

 Connection around() throws SQLException
 : obtainConnection() && cflow(transactedOperation()) {
 if (_connection == null) {
 _connection = proceed();
 _connection.setAutoCommit(false);
 }
 return _connection;
 }

 public static class TransactionException
 extends RuntimeException {
 public TransactionException(Exception cause) {
 super(cause);
 }
 }

 private static aspect SoftenSQLException {
 declare soft : java.sql.SQLException
 : (call(void Connection.rollback())
 || call(void Connection.close()))
 && within(JDBCTransactionAspect);
 }

 pointcut illegalConnectionManagement()
 : (call(void Connection.close())
 || call(void Connection.commit())
 || call(void Connection.rollback())
 || call(void Connection.setAutoCommit(boolean)))
 && !within(JDBCTransactionAspect);

 void around() : illegalConnectionManagement() {
 // Don't call proceed(); we want to bypass
 // illegal connection management here
 }
}

Transaction
management
advice

 e

Pointcut
capturing
connection
creation

 f

Exception indicating
a failed transaction

 g

Softening of
connection
method calls

 h

Handling of
illegal
connection
management

 i

372 CHAPTER 11
Transaction management
Let’s get into the implementation details:
The aspect is associated with each top-level transaction’s control flow. This asso-
ciation forces the creation of a new instance of the subaspect for each invocation
of the operation specified by the topLevelTransactedOperation() pointcut; this
instance maintains the state of the transaction.
All the concrete subaspects of JDBCTransactionAspect must implement the
abstract pointcuts transactedOperation() and obtainConnection(). The trans-
actedOperation() definition should declare the execution of transactional opera-
tions. The obtainConnection() definition should capture join points that obtain
the connections.
The topLevelTransactedOperation() pointcut is defined to be the top-level opera-
tion needing transaction support by using the abstract transactedOperation()
pointcut. This pointcut needs to be advised to perform the transaction management.

 The top-level pointcut is the one with which a new instance of the aspect is
associated. As soon as a join point matching this top-level transaction pointcut is
about to execute, a new instance of the concrete subaspect is created.
The around advice to topLevelTransactedOperation() puts the captured opera-
tion in a try/catch block. In the try block, it simply calls proceed() to carry on
the captured operation. If an operation throws an exception during the execu-
tion of the captured join point, the execution will reach the catch block that
calls rollback() on the connection object. The finally block closes the connec-
tion. The protection of if(_connection != null) handles the cases where the
business logic did not need any updates/queries and therefore did not create a
connection object.
One of the core requirements for JDBC-based transaction management is that
the same connection must be used for all the updates so that we can commit all
the updates at once by invoking commit() on that object. The around advice
checks the connection instance to see if it is null. If it is, that means that this is
the first time it is needed during the execution of the top-level operation. The
advice will then proceed to obtain a new connection, switch off its auto-commit
mode, and assign the result to the _connection instance member. For subsequent
requests to _connection, it simply returns the _connection object that was stored
earlier instead of creating a new connection.
We declare TransactionException as a runtime exception. Throwing this excep-
tion indicates to the caller that the transaction has failed. The nested exception
indicates the cause that led to the failure.
The softening declaration avoids the need for a try/catch block around the roll-
back() and close() calls made in this advice.
Since our solution requires that only the aspect should invoke the transaction
management calls on connection objects, we use an around advice to bypass any

 b

 c

 d

 e

 f

 g

 h

 i

Developing a simple AspectJ-based solution 373
such call made from outside the aspect. For our test scenario, this results in
bypassing Connection.setAutoCommit() called in the DatabaseHelper class and
Connection.close() called in the AccountJDBCImpl class. We discuss this solution
and an improvement using policy enforcement approach in section 11.3.2.

You can now enable transaction functionality in your JDBC-based database sys-
tem by writing a subaspect. All the subaspect needs to do is provide a definition
for two pointcuts: transactedOperation() (to capture operations that need trans-
action support) and obtainConnection() (to capture join points that create con-
nection objects).

11.3.2 Handling legacy system issues

The solution we just described expects that only the aspect will perform any actions
on the connection object, such as committing, changing auto-commit mode, or
closing the connection. However, this expectation is not a given. You have two
choices here: either advise all join points that perform the specified actions on a
connection object to bypass their execution, or include policy enforcement to
cause a compile-time error on all such operations. You may choose either of the
ways based on your comfort level with AspectJ.

 For either approach, we must define a pointcut that captures all connection-
management join points. If we add the following pointcut to JDBCTransaction-
Aspect, it does just that:

 pointcut illegalConnectionManagement()
 : (call(void Connection.close())
 || call(void Connection.commit())
 || call(void Connection.rollback())
 || call(void Connection.setAutoCommit(boolean)))
 && !within(JDBCTransactionAspect);

If you choose to bypass the execution of the join points, you can use empty
around advice in this way:

 void around() : illegalConnectionManagement() {
 // Don't call proceed(); we want to bypass
 // illegal connection management here
 }

This advice protects us from committing or closing a connection in the transac-
tional method itself. This way, the methods no longer manage the connection
object. Without such advice, the connection could be committed right in the mid-
dle of an operation. This advice is especially useful for legacy systems that are
unaware that a transaction management aspect is present in the system.

374 CHAPTER 11
Transaction management
 If you would rather use the policy-enforcement approach, you have to declare
an error for the join points, as follows:

declare error : illegalConnectionManagement()
 : "Do not call close(), commit(), rollback(), or setAutoCommit()

 on Connection objects from here";

Now the classes will not compile unless the developer removes all the calls to
the methods specified by the pointcut. You no longer need the around advice,
because the enforcement will ensure that the system does not contain such a
join point.

 A combination of both approaches is also possible. In this case, you keep the
around advice and demote declare error to declare warning. This way, devel-
opers won’t have to modify the system immediately, but you will still eliminate
connection-management calls.

11.3.3 Enabling transaction management for the banking system

Now that we have the base aspect that provides most of the functionality, let’s
write a concrete subaspect that enables transaction management for the banking
system. All we need to do is to write an aspect extending the JDBCTransaction-
Aspect and define the two abstract pointcuts, as shown in listing 11.6.

package banking;

import java.sql.Connection;

import transaction.jdbc.JDBCTransactionAspect;

public aspect BankingTransactionAspect
 extends JDBCTransactionAspect {
 protected pointcut transactedOperation()
 : execution(* AccountJDBCImpl.debit(..))
 || execution(* AccountJDBCImpl.credit(..))
 || execution(* InterAccountTransferSystem.transfer(..));

 protected pointcut obtainConnection()
 : call(Connection DatabaseHelper.getConnection(..));
}

The BankingTransactionAspect simply defines the first pointcut that captures
the execution of all the methods needing transaction support. The second point-
cut defines all calls to methods that are used for obtaining database connections.

➥

Listing 11.6 BankingTransactionAspect.java

Developing a simple AspectJ-based solution 375
11.3.4 Testing the solution

At this point, we have implemented transaction management for the banking
system. To better understand the solution, let’s improve the logging aspect
(listing 11.7) by adding a pointcut that captures the aspect-creation join points,
which will allow us to observe the creation of new aspects associated with the
control flow of the top-level operations. The changes from listing 11.4 are indi-
cated in bold.

package banking;

import java.sql.*;
import org.aspectj.lang.*;
import logging.*;

import transaction.jdbc.*;

public aspect TransactionLogging extends IndentedLogging {
 declare precedence: TransactionLogging, *;

 public pointcut accountActivities()
 : call(void Account.credit(..))
 || call(void Account.debit(..))
 || call(void InterAccountTransferSystem.transfer(..));

 public pointcut connectionActivities(Connection conn)
 : (call(* Connection.commit(..))
 || call(* Connection.rollback(..)))
 && target(conn);

 public pointcut updateActivities(Statement stmt)
 : call(* Statement.executeUpdate(..))
 && target(stmt);

 public pointcut aspectInstantiation()
 : execution(JDBCTransactionAspect+.new(..));

 public pointcut loggedOperations()
 : accountActivities()
 || connectionActivities(Connection)
 || updateActivities(Statement)
 || aspectInstantiation();

 before() : accountActivities() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("[" + sig.getName() + "]");
 }

Listing 11.7 TransactionLogging.java: an improved version

376 CHAPTER 11
Transaction management
 before(Connection conn) : connectionActivities(conn) {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("[" + sig.getName() + "] " + conn);
 }

 before(Statement stmt) throws SQLException
 : updateActivities(stmt) {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("[" + sig.getName()
 + "] " + stmt.getConnection());
 }

 before() : aspectInstantiation() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("[" + sig.getName() + "] "
 + sig.getDeclaringType());
 }
}

When we compile all the classes and aspects and run the program, we see output
similar to the following:

> ajc banking*.java logging*.java transaction\jdbc*.java
> java banking.Test
[credit]
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.BankingTransactionAspect
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@fa3ac1
 [commit] sun.jdbc.odbc.JdbcOdbcConnection@fa3ac1
[debit]
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.BankingTransactionAspect
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@1833955
 [commit] sun.jdbc.odbc.JdbcOdbcConnection@1833955
[transfer]
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.BankingTransactionAspect
 [credit]
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@21b6d
 [debit]
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@21b6d
 [commit] sun.jdbc.odbc.JdbcOdbcConnection@21b6d
[transfer]
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.BankingTransactionAspect
 [credit]
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@c9ba38
 [debit]
 [rollback] sun.jdbc.odbc.JdbcOdbcConnection@c9ba38

Developing a simple AspectJ-based solution 377
Exception in thread "main" transaction.jdbc.JDBCTransactionAspect
 $TransactionException: banking.InsufficientBalanceException:
 Total balance not sufficient

... the rest of call stack

Let’s examine the output:

1 A new aspect instance is created at the beginning of each top-level oper-
ation as a result of associating the aspect with the control flow of each
top-level operation.

2 The same connection object is used for all the operations inside each
transaction. Specifically, both credit() and debit() operations called dur-
ing the transfer of money from one account to the other use the same con-
nection (JdbcOdbcConnection@21b6d and JdbcOdbcConnection@c9ba38).

3 The commit call is made only at the end of the transaction.
4 Even though credit() and debit() did call commit() on the connection

object, our aspect bypassed it.
5 The connection is rolled back when the last transfer operation throws

an exception.

Note the exception type, JDBCTransactionAspect.TransactionException, shown
in the stack trace. It is wrapping the original InsufficientBalanceException
exception. Because the transfer() method declares that it throws a checked
InsufficientBalanceException exception, the caller of transfer() expects an
InsufficientBalanceException and not a runtime exception. We can take care of
this problem by adding an aspect (listing 11.8) that preserves the checked excep-
tion, based on the exception introduction pattern presented in chapter 8.

package banking;

import transaction.jdbc.JDBCTransactionAspect;

public aspect PreserveCheckedException {
 after() throwing(JDBCTransactionAspect.TransactionException ex)
 throws InsufficientBalanceException
 : call(* banking..*.*(..)
 throws InsufficientBalanceException) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)cause;

Listing 11.8 An aspect that preserves the checked exception

➥
➥

378 CHAPTER 11
Transaction management
 } else {
 throw ex;
 }
 }
}

The aspect in listing 11.8 captures the methods throwing InsufficientBalance-
Exception and advises them to check whether the cause of the exception is of the
InsufficientBalanceException type; if so, it simply throws the cause instead of
the caught exception. Now when we compile and run the test program after
including this aspect, the last transaction log looks like this:

[transfer]
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.BankingTransactionAspect
 [credit]
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@c9ba38
 [debit]
 [rollback] sun.jdbc.odbc.JdbcOdbcConnection@c9ba38
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
... the rest of call stack

Now we have our first AspectJ-based solution for transaction management. This solu-
tion works fine if you have only one subaspect of JDBCTransactionAspect. However, if
you need to use multiple subaspects to separately specify operations that require
transaction support, you may have to enhance this solution, as we describe next.

11.4 Improving the solution

In many situations, operations that must be managed within one transaction may
belong to different subsystems, and it may be desirable for each subsystem to have
its own aspect for specifying the pointcuts for the operations that need transaction
support. That way, any changes to a subsystem require changing only the associ-
ated subaspect. In this case, we need to ensure that the transaction management
for one aspect does not conflict with that of the other. Let’s use two of the patterns
from chapter 8, the participant pattern and the worker object creation pattern, to
create a solution that meets this requirement. In our realization of the participant
pattern, we will create a participant subaspect for each subsystem. We will then use
the worker object creation pattern to ensure that the solution works correctly in all
cases. As we review the example in the next two sections, keep in mind that

➥

Improving the solution 379
although the first pattern sets up the foundation for the solution, we need the sec-
ond pattern to complete it.

11.4.1 Using the participant pattern
The first thing we want to do is create a separate participant subaspect to man-
age the transactions for each subsystem. We can use the participant pattern to do
this, since it specifies that each of these subaspects will extend the same base
abstract aspect that contains the transaction management logic. Therefore, the
subaspects just need to define the pointcuts that specify the join points requiring
transaction management in the subsystems they represent.

 Let’s set up an example so you can understand how this pattern is used. To
keep it simple, we have chosen to nest two separate participant aspects inside the
AccountJDBCImpl and InterAccountTransferSystem classes. Let’s assume that
these two classes are managed by two different developers and that they would like
to specify the operations requiring transaction support independently. Both sub-
aspects (listings 11.9 and 11.10) extend the abstract aspect from our first solution.

package banking;

import java.sql.*;
import transaction.jdbc.JDBCTransactionAspect;

public class AccountJDBCImpl implements Account {

 ... unchanged from listing 11.2

 public static aspect TransactionParticipantAspect
 extends JDBCTransactionAspect {
 protected pointcut transactedOperation()
 : execution(* AccountJDBCImpl.debit(..))
 || execution(* AccountJDBCImpl.credit(..));

 protected pointcut obtainConnection()
 : call(Connection DatabaseHelper
 .getConnection(..));
 }
}

package banking;

import transaction.jdbc.JDBCTransactionAspect;

public class InterAccountTransferSystem {
 public static void transfer(Account from, Account to,
 float amount)

Listing 11.9 The participant aspect nested in the AccountJDBCImpl class

Listing 11.10 The participant aspect nested in the InterAccountTransferSystem class

380 CHAPTER 11
Transaction management
 throws InsufficientBalanceException {
 to.credit(amount);
 from.debit(amount);
 }

 public static aspect TransactionParticipantAspect
 extends JDBCTransactionAspect {
 protected pointcut transactedOperation()
 : execution(* InterAccountTransferSystem.transfer(..));

 protected pointcut obtainConnection();
 }
}

Note that the AccountJDBCImpl.credit() and AccountJDBCImpl.debit() methods
will be called during the execution of InterAccountTransferSystem.transfer().
Although the former two methods will be captured by AccountJDBCImpl.Transaction-
ParticipantAspect, the latter one will be captured by InterAccountTransferSystem.
TransactionParticipantAspect.

 In these listings, each class includes a nested concrete subaspect that extends
JDBCTransactionAspect and defines the transactedOperation() pointcut to capture
methods that need transaction support. Although InterAccountTransferSystem
never obtains a connection itself, we still need to define the obtainConnection()
pointcut. We use a special syntax that omits the : and the pointcut definition fol-
lowing it as described in chapter 3, section 3.1, to define the pointcut so that it
matches no join point.

 Although the use of this pattern helps us by encapsulating the transaction-
management logic in the base aspect, there is a potential problem with it. At
runtime, a separate aspect instance is created for each participant subaspect, and
the connection object will not be shared across these instances. This is not a
problem in many cases. However, the solution will not work if a join point cap-
tured by one subaspect falls in the control flow of a join point captured by
another subaspect.

 Let’s examine the problem in the context of our example subaspects in list-
ings 11.9 and 11.10. The base JDBCTransactionAspect is associated with the con-
trol flow of the join point captured by the topLevelTransactedOperation()
pointcut. As soon as the first matching join point is encountered in a control
flow, a new aspect instance is created automatically (as explained in chapter 4,
section 4.3.3). With this arrangement, when InterAccountTransferSystem.
transfer() is called, the system creates an instance of InterAccountTransferSystem.

Improving the solution 381
TransactionParticipantAspect. Later, when credit() and debit() are called
from InterAccountTransferSystem.transfer(), the system creates two more
instances of AccountJDBCImpl.TransactionParticipantAspect, which are associ-
ated with each method’s control flow. As a result, each of the aspect instances man-
ages its associated control flow and commits its operations independently.
Consider a partial output when we run the test program with the aspects in
listings 11.9 and 11.10 (but without the BankingTransactionAspect in listing 10.6).
For simplicity, we only show the log output for the last two transfer operations:

[transfer]
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.InterAccountTransferSystem$
 TransactionParticipantAspect
 [credit]
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.AccountJDBCImpl$
 TransactionParticipantAspect
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@a1807c
 [commit] sun.jdbc.odbc.JdbcOdbcConnection@a1807c
 [debit]
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.AccountJDBCImpl$
 TransactionParticipantAspect
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@1a679b7
 [commit] sun.jdbc.odbc.JdbcOdbcConnection@1a679b7
[transfer]
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.InterAccountTransferSystem$
 TransactionParticipantAspect
 [credit]
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.AccountJDBCImpl$
 TransactionParticipantAspect
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@127734f
 [commit] sun.jdbc.odbc.JdbcOdbcConnection@127734f
 [debit]
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.AccountJDBCImpl$
 TransactionParticipantAspect
 [rollback] sun.jdbc.odbc.JdbcOdbcConnection@1546e25
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
... the rest of call stack

Notice that a new connection object is created for both of the nested debit and
credit operations that are called during the transfer transaction. The result is
incorrect behavior in that if the second operation, debit(), fails, the first operation,

➥

➥

➥

➥

➥

➥

➥

382 CHAPTER 11
Transaction management
credit(), will still succeed. In that case, the bank would have credited the
amount to the receiving account while not debiting from the source account—a
sure recipe for bankruptcy! In order to use the same connection object for all
transactions, you would normally have to specify all the methods needing trans-
action management in a single aspect. In a large system, this pointcut definition
may span over many classes and packages, making the use of only one aspect
impractical. Obviously, something is still missing. In the next section, we add the
worker object creation pattern to this example, which will correct the problem
and provide us with a complete solution.

11.4.2 Implementing the JDBC transaction aspect:
the second version

In order to use multiple subaspects to manage transactions, you must ensure that
the same connection object is used to carry out all the updates in a transaction—
even when different aspects capture different operations occurring in the trans-
action. In the solution in section 11.3, the aspect performed two roles: weaving
the transaction commit and rollback calls, and storing the connection object so
that all the operations in the transaction could refer to it. In the second version
of the solution, we separate these two roles. We assign the aspect the responsibil-
ity to perform the commit and rollback only, and utilize a separate transaction
context object to store the connection.

 To implement this separation, first we use the default (instead of the perc-
flow) association for the JDBCTransactionAspect aspect and remove the
_connection instance member from it. The use of the default association results
in the creation of at most one instance of each subaspect during the lifetime of a
program’s execution. Because the _connection instance is removed from the
aspect, the aspect is a stateless aspect and the instances of aspects are no longer
important to our solution. Next, we utilize the worker object creation pattern to
automatically create the worker object for each new transaction, and assign to it
the responsibility of storing the connection object. Thus, the worker object serves
as the transaction context.

 Following the pattern, we create a worker object for each top-level operation
that needs transaction management, thus treating the top-level operation as a
worker method. The worker object’s run() method surrounds the worker method
with the transaction-management logic. When the first method that needs trans-
action management executes, the connection object that gets created is stored
inside the worker object. We use the context object to ensure that we do not

Improving the solution 383
create an additional connection object when we encounter a new join point while
we are in the control flow of the run() method of the worker object. Let’s modify
the base aspect from our first solution to incorporate these modifications, as
shown in listing 11.11.

package transaction.jdbc;

import java.sql.*;

import pattern.worker.*;

public abstract aspect JDBCTransactionAspect {
 protected abstract pointcut transactedOperation();

 protected abstract pointcut obtainConnection();

 protected pointcut
 inTransactedOperation(TransactionContext context)
 : cflow(execution(* TransactionContext.run())
 && this(context));

 Object around() : transactedOperation()
 && !inTransactedOperation(TransactionContext) {
 TransactionContext transactionContext
 = new TransactionContext() {
 public void run() {
 try {
 _returnValue = proceed();
 if (_connection != null) {
 _connection.commit();
 }
 } catch (Exception ex) {
 if (_connection != null) {
 _connection.rollback();
 }
 throw new TransactionException(ex);
 } finally {
 if (_connection != null) {
 _connection.close();
 }
 }
 }};

 transactionContext.run();
 return transactionContext.getReturnValue();
 }

Listing 11.11 JDBCTransactionAspect.java: the improved version

Declaration of aspect b
Abstract
pointcuts

 c

Pointcut
detecting
in-progress
transaction

 d

Advice to the
top-level
method

 e

 fTransaction context
performing the
operation

384 CHAPTER 11
Transaction management
 Connection around(final TransactionContext context)
 throws SQLException
 : obtainConnection() && inTransactedOperation(context) {
 if (context._connection == null) {
 context._connection = proceed(context);
 context._connection.setAutoCommit(false);
 }
 return context._connection;
 }

 public static abstract class TransactionContext
 extends RunnableWithReturn {
 Connection _connection;
 }

 ... illegal connection management unchanged from the earlier version

 ... TransactionException class unchanged from the earlier version

 ... softening of connection methods unchanged from the earlier version

}

We implement a separate TransactionContext class that extends the Runnable-
WithReturn class that was introduced along with the worker object creation pat-
tern in chapter 8. All the concrete subclasses must provide implementations of
the run() method. The run() method should execute the worker method and set
the _returnValue member to the result of the operation.

 A new context object is created for all operations that begin a transaction
unless they are already in the control flow of the execution of a transaction con-
text’s run() method. This is the key point. No matter which aspect creates the
transaction context, a new context will not be created for an operation that is
already part of a transaction context. Because the transaction management is per-
formed only through the context object and no new context is created for a
nested transaction operation, we solve the problem we had in the earlier solution.

 Let’s now dive into the details of the implementation:
There’s nothing interesting here, except that we no longer associate the aspect
with the per-control flow of any pointcut.
This aspect has the same two abstract pointcuts as in the earlier implementation.
Any aspect that wants to enable transaction management must provide a defini-
tion for both of these pointcuts.
The inTransactedOperation() pointcut captures the control flow of the Transac-
tionContext.run() method (explained later in h) and collects the object associ-

 gWormhole between
context creation and
connection creation

TransactionContext
class

 h

 b

 c

 d

Improving the solution 385
ated with the method. The collected object is passed through the call stack as
explained in g.
The advice to the transactedOperation() pointcut, which specifies join points that
are not already in a transaction context execution, creates a new transaction context.
The run() method implementation is identical to the around advice body in the
earlier version of this solution. Note the call to proceed() from the run() method
and the setting of _returnValue to the value returned by proceed(), as outlined
by the worker object creation pattern.
The advice for obtainConnection() needs the transaction object associated
with the surrounding transaction so that it can access its _connection object.
The inTransactedOperation() pointcut captures this context. This arrange-
ment is a direct result of applying the wormhole pattern to create a direct path
between the transaction object’s run() method and any method that needs to
obtain the connection.
The TransactionContext abstract class extends the RunnableWithReturn class. It
includes one instance member, _connection, to hold the transaction’s connec-
tion object.

Now that we have this base aspect, we can use the participating aspects described
in listings 11.9 and 11.10, since overlapping join points between the two aspects
is no longer a problem.

11.4.3 Testing the solution

We are now ready to test our solution. The new solution’s core theme is to use an
automatically created transaction context class, so we need to understand the
creation of the new context. Therefore, we add the logging of context-creation
join points to our logging aspect, as shown in listing 11.12.

...

public aspect TransactionLogging extends IndentedLogging {
 declare precedence: TransactionLogging, *;

 ...

 public pointcut contextInstantiation()
 : execution(*.TransactionContext+.new(..));

 public pointcut loggedOperations()
 : accountActivities()
 || connectionActivities(Connection)

 e

 f

 g

 h

Listing 11.12 Adding context creation to logging

386 CHAPTER 11
Transaction management
 || updateActivities(Statement)
 || aspectInstantiation()
 || contextInstantiation();

 ...

 before() : aspectInstantiation() || contextInstantiation() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("[" + sig.getName() + "] "
 + sig.getDeclaringType());
 }
}

When we compile all the classes and aspects together, including the nested
aspects as shown in listings 11.9 and 11.10, and run the Test class, we get output
similar to the following (make sure you do not include the BankingTransaction-
Aspect from listing 10.6 during the compilation):

> ajc banking*.java logging*.java transaction\jdbc*.java
> java banking.Test
[credit]
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.AccountJDBCImpl$
 TransactionParticipantAspect
 [<init>] class transaction.jdbc.JDBCTransactionAspect$
 TransactionContext
 [<init>] class transaction.jdbc.JDBCTransactionAspect$1
 [<init>] class transaction.jdbc.JDBCTransactionAspect
 [<init>] class banking.InterAccountTransferSystem$
 TransactionParticipantAspect
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@e86da0
 [commit] sun.jdbc.odbc.JdbcOdbcConnection@e86da0
[debit]
 [<init>] class transaction.jdbc.JDBCTransactionAspect$
 TransactionContext
 [<init>] class transaction.jdbc.JDBCTransactionAspect$1
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@a97b0b
 [commit] sun.jdbc.odbc.JdbcOdbcConnection@a97b0b
[transfer]
 [<init>] class transaction.jdbc.JDBCTransactionAspect$
 TransactionContext
 [<init>] class transaction.jdbc.JDBCTransactionAspect$1
 [credit]
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@c9ba38
 [debit]
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@c9ba38
 [commit] sun.jdbc.odbc.JdbcOdbcConnection@c9ba38
[transfer]

➥

➥

➥

➥

➥

Advanced transaction management 387
 [<init>] class transaction.jdbc.JDBCTransactionAspect$
 TransactionContext
 [<init>] class transaction.jdbc.JDBCTransactionAspect$1
 [credit]
 [executeUpdate] sun.jdbc.odbc.JdbcOdbcConnection@c2a132
 [debit]
 [rollback] sun.jdbc.odbc.JdbcOdbcConnection@c2a132
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient

The log output shows that we no longer create new aspects for each control flow.
Instead, only one aspect is created for each participant and a new Transaction-
Context object is created for each top-level operation’s control flow. We now have
a solution that allows us to use the participant pattern correctly with the transaction-
management aspect. The participant pattern lets us separate the definition for
transaction operations from various modules. Note how effectively we utilized all
four patterns—worker object creation, wormhole, exception introduction, and
participant—presented in chapter 8.

11.5 Using AspectJ with advanced transaction-
management systems

In the previous sections, we dealt with transaction management for the systems
that use the basic JDBC transaction support, and we demonstrated the basic con-
cepts of using transaction management with AspectJ. In modern complex systems,
however, the requirements tend to be more involved. In particular, it is often nec-
essary to have distributed transaction management involving multiple resources
spanning multiple databases. You may also have to update additional legacy data-
bases or an Enterprise Resource Planning (ERP) database for each operation, and
the transaction must ensure the correct functioning of updates to each database.
In these cases, a transaction must span over multiple connection objects.

 A transaction may also span over multiple kinds of resources. For example, you
may have to update a database and send messages over a queue using JMS in the
same transaction. In that case, both the database update and the message queue
send must succeed in order to keep the system in a consistent state. These cases
require the use of a Transaction Processing (TP) monitor to coordinate the transac-
tion across multiple resources. Of course, for this scheme to work correctly, the
resources (such as the database and JMS messaging middleware) must be capable
of collaborating with a TP monitor. The use of an API like JTA allows you to work
with the TP monitor without locking you into a particular implementation.

➥

➥

388 CHAPTER 11
Transaction management
 Even with JTA, the separation of the transaction concern from the core con-
cern cannot be achieved when you are using a purely object-oriented approach.
This is because the calls to the creation, commit, and rollback of transactions will
span over all the modules that have operations requiring transaction manage-
ment. JTA provides transparency with respect to the actual TP monitor imple-
mentation that is used, but it still requires the invocation of its API from multiple
core modules.

 In this section, we examine a template using AspectJ to modularize the cross-
cutting behavior for transaction management when we use JTA. Listing 11.13
shows an abstract base aspect that encapsulates all the JTA-based transactions.
You will need to add one or more concrete subaspects, each defining the trans-
actedOperation() pointcut.

package transaction.jta;

import javax.naming.*;
import javax.transaction.*;

import pattern.worker.*;

public abstract aspect JTATransactionAspect {
 protected abstract pointcut transactedOperation();

 protected pointcut
 inTransactedOperation(TransactionContext context)
 : cflow(execution(* TransactionContext.run())
 && this(context));

 Object around() : transactedOperation()
 && !inTransactedOperation(TransactionContext) {
 TransactionContext transactionContext
 = new TransactionContext() {
 public void run() {
 UserTransaction ut = null;
 try {
 Context ctx = new InitialContext();
 ut = (UserTransaction)
 ctx.lookup("java:comp/ut");
 } catch (NamingException ex) {
 throw new TransactionException(ex);
 }
 try {
 ut.begin();
 _returnValue = proceed();
 ut.commit();

Listing 11.13 JTATransactionAspect.java: the base aspect

Advanced transaction management 389
 } catch (Exception ex) {
 ut.rollback();
 throw new TransactionException(ex);
 }
 }};

 transactionContext.run();
 return transactionContext.getReturnValue();
 }

 public static abstract class TransactionContext
 extends RunnableWithReturn {
 }

 public static class TransactionException
 extends RuntimeException {
 public TransactionException(Exception cause) {
 super(cause);
 }
 }

 private static aspect SoftenSystemException {
 declare soft : javax.transaction.SystemException
 : call(void UserTransaction.rollback())
 && within(JTATransactionAspect);
 }
}

This abstract aspect in listing 11.13 is similar to the one shown in listing 11.11.
The differences include:

1 We use a UserTransaction object to provide transaction management; it
supplies an API for committing and rolling back a transaction. We mark
the start of a transaction using UserTransaction.begin(), commit the
transaction using UserTransaction.commit(), and roll back using User-
Transaction.rollback().

2 We no longer have a pointcut and advice to ensure the use of the same con-
nection object. With the use of JTA you no longer have to use only one
resource (the database connection, for example) for the individual updates.

You might want to add a few policy-enforcement constructs in this aspect to
ensure that, for example, the use of resources that are not JTA-friendly is prohib-
ited. The details will depend on your system architecture.

390 CHAPTER 11
Transaction management
11.6 Summary

Transaction management is a complex topic, although advances in transaction-
processing monitors and standardization efforts have helped to simplify its
implementation significantly. When a declarative mechanism such as the one
used with EJB is not available, you need to deal with the issues arising from the
lack of modularization of crosscutting concerns. The AspectJ-based solution pre-
sented in this chapter adds the missing link so that you can modularize the
implementation of transaction management in a general-purpose way.

 Although in this chapter we discussed transactions in the narrow sense of
JDBC and JTA, the core concepts here are widely applicable. They can be used
whenever you have to ensure atomicity of a complex operation. This will result in
a modularized implementation of the atomicity concerns, and if your atomicity
requirement should change, the modifications will be easy to implement. Using
the worker object creation and participant patterns presented in this chapter
should help you devise an AspectJ-based solution to a variety of problems you
will encounter during your AspectJ journey.

12Implementing
business rules
This chapter covers
■ Using AspectJ to modularize implementation of

business rules
■ Using plain Java with AspectJ to implement rules
■ Using a rule engine with AspectJ
391

392 CHAPTER 12
Implementing business rules
Business rule implementation is an essential part of any enterprise system; it
applies to many facets of business behavior that support policy and strategy
changes. Business rules range from the simple—such as sending email after users
have completed their purchase on an e-commerce site—to the complex—such as
suggesting additional items a user might want to purchase based on the user pro-
file, recent purchases, and product availability. Business rules tend to change over
time due to new policies, new business realities, and new laws and regulations.

 Current mechanisms of implementing business rules require embedding the
rule evaluation or calls to it right in core modules of the system, causing the
implementation to be scattered over multiple modules. A change in the rule spec-
ification requires changes in all modules that are involved. These modifications
are invasive and time-consuming. Further, because business rules (such as a dis-
counting scheme) are a lot more volatile compared to core business logic (such as
sales), mixing them together causes the core system to become just as volatile.

 You can see how this can be a crosscutting concern. In this chapter, we explain
how you can use AspectJ to modularize the solution for these concerns.

12.1 Using business rules in enterprise applications

For the purpose of this chapter, we make a distinction between core business logic
and business rules so that we can understand their characteristics. We consider
core business logic to be the implementation of basic business constraints, such as
not being able to debit from a bank account when there is an insufficient balance.
Business rules, on the other hand, model constraints due to forces such as business
policies and regulations. For example, restricting the number of transactions per
statement period and charging for extra transactions would normally be business
rules. Although the distinction between the two is largely perspective-dependent,
there is an understood boundary between the two for any given system. If, for
example, charging for an extra transaction is fundamental to the business’s oper-
ations, it may be treated as core business logic instead of a business rule. Core
business logic tends to be more stable and inherently modular as opposed to busi-
ness rules, which tend to change quickly and cross multiple modules.

 In business-to-business (B2B) and business-to-consumer (B2C) applications,
rules play an important role. With rapid changes in the business environment,
the deployment of business rules separately from the business core logic pro-
vides the needed agility to respond to a changing environment. For example,
business rules can implement cross-product promotions quite effectively. A shop-
ping cart application can involve rules that offer product suggestions based on

Current mechanisms 393
customers’ shopping cart contents; it could also incorporate a more sophisti-
cated system that is based on customers’ purchasing history, their response to
earlier product offers, their geographical location, current climatic conditions,
the availability of to-be-suggested products, and even the profit margin of the
promoted products. The result is an overall improvement in customer experi-
ence and increased revenue for the enterprise.

12.2 An overview of business rule implementation

In its simplest form, business rule implementation may involve code written in a
general-purpose language such as Java. These implementations usually take the
form of a series of if-then statements. Evaluating the business rules then requires
that you evaluate all of these statements and take the associated action.

 The most common way to implement business rules is to use a rule engine.
Rule engines can significantly improve the process by separating the rule evalua-
tions from rule invocations. Further, some engines allow a simpler way to express
rules, using either a GUI or English-like language instead of expressing them
using a programming language. This lets the nonprogrammer domain experts
build the rules themselves.

 Business rule implementation is common enough in enterprises that a Java
Specification Request (JSR 94) for the Java Rule Engine API exists (currently in
public review stage). This JSR is expected to come with a standard API to interact
with rule engines. There are also several projects in development, such as
RuleML and Simple Rule Markup Language (SRML), to formulate a common
XML-based language for expressing rules. With these projects, we will have a
common API to interact with the rule engine and a common language to express
business rules, eliminating some barriers in effectively using rule engines.

 In this chapter, we examine the use of AspectJ in modularizing business rule
implementation. We first show you how to use plain Java for implementing rules,
and we then use an engine to implement the same rules. In both cases, the use of
AspectJ cleanly separates the rule implementation from the core business logic.

12.3 Current mechanisms

The integration of business logic and business rules varies a lot depending on
the complexity of the rules. For simple rules, it is common to implement them
along with the core business logic. However, this method results in several devel-
opment and maintenance issues common with other crosscutting concerns.

394 CHAPTER 12
Implementing business rules
Because the implementation of business rules is spread over as many modules as
the core business logic, the core business logic is tangled with business rules,
resulting in a hard-to-follow implementation. In addition, the same rules need to
be embedded at many points—typically at all state-change points—in the busi-
ness class, causing duplication of code.

 Implementations of complex business rules often employ a set of modules
called a rule engine for business rule evaluation that is separate from the core
logic. In these cases, however, even if the implementation of the rule evaluation
is separated, the core business logic must call the rule engine API from each
module that may need the rules.

 Whether you are using simple or complex rules, the fundamental problem is
the same: the business rule implementation is scattered all over the core business
modules. Since such scattering is a classic symptom of a crosscutting concern,
you can employ AspectJ to modularize the concern.

12.4 Introducing a solution using AspectJ

Using AspectJ, you can cleanly separate the implementation of core business
logic and the accompanying business rules. In this section, we focus on the
abstract nature of the solution rather than the implementation details by creat-
ing a template solution. Later in the chapter, we develop example solutions
based on this template. You can then take this template and apply it to your sys-
tem to create your own solutions.

12.4.1 The template

The template solution for the implementation of business rules using AspectJ is
more loosely defined than some of our previous template solutions, such as the one
for resource pooling in chapter 7. The fundamental idea behind our solution is to
identify join points that need business rule execution, capture them by defining the
right set of pointcuts, and advise those join points to invoke the business rules.

Participating entities
The participating entities needed in a system that implements business rules are
as follows:

■ Classes implementing the core business logic—These classes are also clients for
the business rule evaluator.

■ Classes, aspects, or a rule engine implementing business rules—These entities
take care of evaluating business rules that apply to the business objects. In

Introducing a solution using AspectJ 395
its simplest form, a class could be implementing the business rules. For
complex rules, you could use a rule engine.

Participating join points
The participating join points for implementing business rules depend greatly on
the business rules themselves. Typically, such join points capture important
events in a business. For example, in an airline’s booking system, a method that
checks flight availability would be a join point where you could apply the rules to
determine the extent to which a flight could be overbooked.

 Because the evaluation of business rules often depends on the context of the
join points (such as the state of the business object), the pointcuts must capture
any such context. For instance, to determine flight availability, the methods
need to know the flight being booked and the class (first class, business, or econ-
omy) for which a reservation is requested. You can then supply this information
to the module that evaluates the rules to determine whether a booking should
be allowed.

Concern weaving
After identifying join points in the system, we need to advise them to evaluate
business rules. The advice body will either call a method in a business rule imple-
mentation, passing it the captured context, or run the business rule engine. If a
rule engine is used, the advice body typically initializes it with the captured con-
text of the join point before running the engine.

A template for the business rule aspect
Let’s look at a template for an aspect that coordinates business rules. The template
aspect contains a pointcut definition and advice to it. The pointcut captures all
methods needed by the business rule invocation along with their context. If the
business rules are implemented in the code, the advice to this pointcut invokes
that implementation. If a rule engine is used, the advice initializes the rule engine
with the context and runs the engine. Listing 12.1 shows our template.

aspect BusinessRuleCoordinator {
 pointcut methodsNeedingBusinessRules(<context...>)
 : call(...) ...;

 before(<context...>) : methodsNeedingBusinessRules() {
 // Evaluate rules
 // Fire action for matching rules

Listing 12.1 A template for an aspect that coordinates business rule invocation

396 CHAPTER 12
Implementing business rules
 // If rule engine is used:
 // 1. Initialize rule engine with the context
 // 2. Run rule engine evaluation
 }
}

The methodsNeedingBusinessRules() pointcut captures all the join points where
we need to evaluate business rules. This pointcut typically captures invocation
of all important methods in the business logic. For each join point, the point-
cut also collects the context that will be needed to evaluate the rules. The
advice body to the methodsNeedingBusinessRules() pointcut may embed the
rule evaluation logic directly in its body, in which case it fires actions for the
matching rules. If a rule engine is used, the advice initializes the rule engine
with the collected context and requests that the rule engine evaluate the rules.
The rule engine, in turn, performs the actions associated with all rules that
evaluate to true.

12.5 Example: the banking system

Now that we have a template, let’s see how we can use it to create a real-life
solution. First, we develop a simple banking system that implements the core
business logic. We then create two aspects that implement business rules for
minimum balance and overdraft protection, and show their effect through a
test program.

12.5.1 Implementing the core business logic

Our banking system, shown in figure 12.1, is similar to one in chapter 10,
except here we add a few new capabilities to help us illustrate business rule
implementation. This system has the power to create new customers, add
accounts to customers, mark certain accounts as overdraft accounts, and make
transactions in the accounts. We’ve also included a facility mimicking a check
clearance system.

 The Customer class models a banking customer and is associated with a set of
accounts that belong to a customer and a subset of those accounts marked as
overdraft accounts. Overdraft accounts are designated to automatically transfer
money to the checking account when a check clearance system detects an insuffi-
cient balance in that checking account. Listing 12.2 shows the implementation of
the Customer class.

Example: the banking system 397
package banking;

import java.util.*;

public class Customer {
 private String _name;

 private Collection _accounts = new Vector();
 private Collection _overdraftAccounts = new Vector();

 public Customer(String name) {
 _name = name;
 }

 public String getName() {
 return _name;
 }

 public void addAccount(Account account) {
 _accounts.add(account);
 }

 public Collection getAccounts() {
 return _accounts;
 }

Listing 12.2 Customer.java: a banking customer

Figure 12.1 In our banking example, the customer owns a few accounts, some of which are marked
as overdraft accounts. Checking and savings are two specific types of account; there could be many
such specified accounts.

Owned
accounts

Overdraft
accounts

Owned
account
management

398 CHAPTER 12
Implementing business rules
 public void addOverdraftAccount(Account overdraftAccount) {
 _overdraftAccounts.add(overdraftAccount);
 }

 public Collection getOverdraftAccounts() {
 return _overdraftAccounts;
 }
}

The Customer class provides an API that adds accounts belonging to a customer
and designates overdraft accounts. It also contains methods for getting the
name, the list of accounts, and the list of overdraft accounts. The Account inter-
face is based on the one we introduced in chapter 10 (listing 10.1), except here
we add the concept of an associated customer to this interface. We use Insufficient-
BalanceException (from listing 10.2) without any modifications. Listing 12.3 shows
the Account interface with the modifications indicated in bold.

package banking;

public interface Account {
 public int getAccountNumber();

 public void credit(float amount);

 public void debit(float amount)
 throws InsufficientBalanceException;

 public float getBalance();

 public Customer getCustomer();
}

We also introduce two tagging subinterfaces of Account—SavingsAccount and
CheckingAccount—to designate the two types of accounts we will use. Listing 12.4
shows the code for the SavingsAccount interface. Similarly, listing 12.5 shows
code for the CheckingAccount interface.

package banking;

public interface SavingsAccount extends Account {
}

Listing 12.3 Account.java: with customer information

Listing 12.4 SavingsAccount.java

Overdraft
account

management

Example: the banking system 399
package banking;

public interface CheckingAccount extends Account {
}

Now let’s modify the AccountSimpleImpl implementation from chapter 10 (list-
ing 10.3) so that it supports modeling the customer to whom an account
belongs. The new implementation appears in listing 12.6; the changes are
marked in bold.

package banking;

public abstract class AccountSimpleImpl implements Account {
 private int _accountNumber;
 private float _balance;
 private Customer _customer;

 public AccountSimpleImpl(int accountNumber, Customer customer) {
 _accountNumber = accountNumber;
 _customer = customer;
 }

 public int getAccountNumber() {
 return _accountNumber;
 }

 public void credit(float amount) {
 _balance = _balance + amount;
 }

 public void debit(float amount)
 throws InsufficientBalanceException {
 if (_balance < amount) {
 throw new InsufficientBalanceException(
 "Total balance not sufficient");
 } else {
 _balance = _balance - amount;
 }
 }

 public float getBalance() {
 return _balance;
 }

Listing 12.5 CheckingAccount.java

Listing 12.6 AccountSimpleImpl.java: the base account implementation

400 CHAPTER 12
Implementing business rules
 public Customer getCustomer() {
 return _customer;
 }
}

We added an additional argument to the constructor of the AccountSimpleImpl
class that denotes the customer to whom the account belongs; we store the argu-
ment in an instance variable. The class implements the getCustomer() method
that is specified in the base interface that returns this stored instance. Note that
we have marked this class as abstract to force developers to instantiate objects of
its concrete subclasses according to the type of account.

 The classes SavingsAccountSimpleImpl and CheckingAccountSimpleImpl
extend the AccountSimpleImpl class and implement the tagging interfaces Sav-
ingsAccount and CheckingAccount to model savings and checking accounts,
respectively. These classes, in listings 12.7 and 12.8, besides providing imple-
mentation for the toString() method, do not add any special behavior and as
such serve as placeholders.

package banking;

public class SavingsAccountSimpleImpl
 extends AccountSimpleImpl implements SavingsAccount {
 public SavingsAccountSimpleImpl(int accountNumber,
 Customer customer) {
 super(accountNumber, customer);
 }

 public String toString() {
 return "SavingsAccount(" + getAccountNumber() + ")";
 }
}

package banking;

public class CheckingAccountSimpleImpl
 extends AccountSimpleImpl implements CheckingAccount {
 public CheckingAccountSimpleImpl(int accountNumber,
 Customer customer) {
 super(accountNumber, customer);
 }

Listing 12.7 SavingsAccountSimpleImpl.java

Listing 12.8 CheckingAccountSimpleImpl.java

Example: the banking system 401
 public String toString() {
 return "CheckingAccount(" + getAccountNumber() + ")";
 }
}

Both the SavingsAccountSimpleImpl and CheckingAccountSimpleImpl classes con-
tain a constructor that simply calls the base class constructor.

 Last, the CheckClearanceSystem class in listing 12.9 represents a check clear-
ance system that is similar to other banking transaction systems, such as the ATM
or teller systems. Its methods—debit() and credit()—simply delegate the
operation to the account object supplied.

package banking;

public class CheckClearanceSystem {
 public static void debit(Account account, float amount)
 throws InsufficientBalanceException {
 account.debit(amount);
 }

 public static void credit(Account account, float amount) {
 account.credit(amount);
 }
}

We now have a simple banking system and are ready to demonstrate the imple-
mentation of rules using aspects.

12.5.2 Implementing the first business rule

The first rule we consider is a rather simple minimum balance rule. In natural
language the rule reads:

Do not allow the minimum balance to fall below a preset amount for sav-
ings accounts.

The aspect we will develop needs to implement this rule by advising the
debit() method of SavingsAccount to check whether the transaction would
reduce the balance so that it would be below the minimum balance; if it would,
the advice needs to throw an exception.

Listing 12.9 A class implementing the check clearance system

402 CHAPTER 12
Implementing business rules
 Before we develop the concrete aspects, let’s write an abstract aspect—Abstract-

DebitRulesAspect—to allow the sharing of code, as shown in listing 12.10.

package rule.common;

import banking.*;

public abstract aspect AbstractDebitRulesAspect {
 public float Account.getAvailableBalance() {
 return getBalance();
 }

 public pointcut debitExecution(Account account,
 float withdrawalAmount)
 : execution(void Account.debit(float)
 throws InsufficientBalanceException)
 && this(account) && args(withdrawalAmount);
}

The abstract aspect AbstractDebitRulesAspect serves as the base aspect for all
aspects that implement the business rules concerned with debit transactions. In a
normal development cycle, you would create this aspect as a result of refactoring.
Because we will be dealing with debit logic, we need to get the available balance for
an account. The available balance may be different from the actual balance for cer-
tain kinds of accounts. The aspect introduces the getAvailableBalance() method
in the Account interface that provides the default implementation for making the
available balance the same as the actual balance. The concrete aspects introduce
methods in appropriate subclasses to make the two balances different.
The debitExecution() pointcut captures the execution of the debit() method in
the Account interface. It collects the account object and the withdrawal amount
as the context.

Now that we have our base aspect, let’s extend it in a concrete aspect—Minimum-

BalanceRuleAspect (listing 12.11)—that will implement the first business rule.

package rule.java;

import rule.common.*;
import banking.*;

public aspect MinimumBalanceRuleAspect
 extends AbstractDebitRulesAspect {

Listing 12.10 AbstractDebitRulesAspect.java: the base aspect

Introducing
getAvailable-
Balance() in the
Account class

 b

Capturing
debit
transactions

 c

 b

 c

Listing 12.11 An aspect that implements the rule for enforcing a minimum balance

Example: the banking system 403
 private static final float MINIMUM_BALANCE_REQD = 25;

 public float SavingsAccount.getAvailableBalance() {
 return getBalance() - MINIMUM_BALANCE_REQD;
 }

 pointcut savingsDebitExecution(Account account,
 float withdrawalAmount)
 : debitExecution(account, withdrawalAmount)
 && this(SavingsAccount);

 before(Account account, float withdrawalAmount)
 throws InsufficientBalanceException
 : savingsDebitExecution(account, withdrawalAmount) {
 if (account.getAvailableBalance() < withdrawalAmount) {
 throw new InsufficientBalanceException(
 "Minimum balance condition not met");

 }

 }

}

We introduce the getAvailableBalance() method in SavingsAccount, overriding
the method introduced into the Account interface by the base aspect. This
method reduces the available balance by MINIMUM_BALANCE_REQD. The savings-
DebitExecution() pointcut captures the execution of debit transactions in the
SavingsAccount interface. It uses the debitExecution() pointcut defined in the
base aspect and restricts it with the this(SavingsAccount) pointcut. This restric-
tion causes the pointcut to match only SavingsAccount transactions. The before
advice to savingsDebitExecution() throws an InsufficientBalanceException
exception if the available balance is less than the requested withdrawal amount.

12.5.3 Implementing the second business rule

The second business rule we consider is overdraft protection. In natural lan-
guage the new rule reads:

If a check could not be cleared and if there is a sufficient balance in an
overdraft account, clear the check by transferring the required amount
from that overdraft account to the checking account.

Note that the rule specifies that the application of the overdraft protection rule
is only for transactions initiated by the check clearance system. Transactions

404 CHAPTER 12
Implementing business rules
initiated in other ways should not be affected by this rule. For example, if a cus-
tomer attempts to withdraw an amount from an ATM that exceeds the balance, it
will not trigger overdraft protection; instead, the ATM displays the message that
the balance is not sufficient.

 The aspect in listing 12.12 implements the overdraft protection rule by cap-
turing the debit transaction on the checking account that was initiated by the
check clearance system. The aspect captures the check clearance join point and
performs the overdraft protection logic if the balance in the checking account is
not sufficient.

package rule.java;

import java.util.*;

import banking.*;
import rule.common.*;

public aspect OverdraftProtectionRuleAspect
 extends AbstractDebitRulesAspect {

 pointcut checkClearanceTransaction()
 : execution(* CheckClearanceSystem.*(..));

 pointcut checkingDebitExecution(Account account,
 float withdrawalAmount)
 : debitExecution(account, withdrawalAmount)
 && this(CheckingAccount);

 before(Account account, float withdrawalAmount)
 throws InsufficientBalanceException
 : checkingDebitExecution(account, withdrawalAmount)
 && cflow(checkClearanceTransaction()) {
 if (account.getAvailableBalance() < withdrawalAmount) {
 performOverdraftProtection(account, withdrawalAmount);
 }
 }

 private void performOverdraftProtection(Account account,
 float withdrawalAmount)
 throws InsufficientBalanceException {
 float transferAmountNeeded
 = withdrawalAmount - account.getAvailableBalance();
 Customer customer = account.getCustomer();
 Collection overdraftAccounts
 = customer.getOverdraftAccounts();
 for (Iterator iter = overdraftAccounts.iterator();

Listing 12.12 An aspect that implements the overdraft protection rule

Pointcut for
check clearance
system
transactions

 b

Pointcut for
debit
transaction in
the checking
account

 c

Overdraft
protection

advice

 d

 e

Example: the banking system 405
 iter.hasNext();) {
 Account overdraftAccount = (Account)iter.next();
 if (overdraftAccount == account) {
 continue;
 }

 if (transferAmountNeeded <
 overdraftAccount.getAvailableBalance()) {
 overdraftAccount.debit(transferAmountNeeded);
 account.credit(transferAmountNeeded);
 return;
 }
 }
 throw new InsufficientBalanceException(
 "Insufficient funds in overdraft accounts");
 }
}

Let’s examine the implementation in more detail:
The checkClearanceTransaction() pointcut captures the call to any method in
the CheckClearanceSystem class. This pointcut excludes calls that are made to the
account transaction from other systems, such as an ATM system.
The checkingDebitExecution() pointcut restricts the debitExecution() pointcut
to checking accounts only.
The before() advice uses the cflow() pointcut to advise all debitExecution()
methods that occurred in the control flow of the checkClearanceTransaction()
pointcut. (This use of cflow() is modeled after the wormhole pattern that we
studied in chapter 8.) This results in the advice being applied only to debit()
methods executed during a check clearance process, thus ignoring transactions
initiated from other systems. If the available balance is less than that withdrawal
amount, the advice performs the overdraft protection logic by calling the perform-
OverdraftProtection() method.
The performOverdraftProtection() method performs the core logic of overdraft
protection. If the account balance is not enough to cover the amount of the
check, the method checks to see if one of the overdraft accounts has enough to
cover it. If such an account is found, the advice transfers the required amount to
the checking account. If no overdraft account has sufficient funds, we throw an
InsufficientBalanceException. For simplicity, our overdraft protection does not
consider partial withdrawals from multiple accounts to fulfill a request.

In a non-AOP solution, implementing the logic so that it checks for debit actions
performed through the check clearance system is quite a task. There are multi-
ple ways to achieve the goal, each with its own set of issues. One way would be to

Overdraft
protection logic e

 b

 c

 d

 e

406 CHAPTER 12
Implementing business rules
use additional APIs, such as debit(float amount, boolean isCheckClearance-
Transaction). The last parameter in the method call would indicate whether the
caller of the method was the check clearance system.

NOTE You could also detect the caller of the debit operation from the call
stack. However, using the call stack in this way is unreliable due to com-
piler and VM optimizations, as we discussed in the context of logging in
chapter 5, section 5.1.2.

We now have aspects that encode the evaluation of both banking rules without
using a rule engine. If we need to modify the rules, we simply update these
aspects. When we implement new business rules, we can just add additional
aspects that extend the abstract aspect.

12.5.4 Writing a test program

Next, let’s write a simple program that tests our solution (listing 12.13). Later in
the chapter we will compile this program with and without the aspects and see
how the behavior of the system changes.

package banking;

import java.io.*;

public class Test {
 public static void main(String[] args) throws Exception {
 Customer customer1 = new Customer("Customer1");

 Account savingsAccount
 = new SavingsAccountSimpleImpl(1, customer1);
 Account checkingAccount
 = new CheckingAccountSimpleImpl(2, customer1);

 customer1.addAccount(savingsAccount);
 customer1.addAccount(checkingAccount);
 customer1.addOverdraftAccount(savingsAccount);

 savingsAccount.credit(1000);
 checkingAccount.credit(1000);

 savingsAccount.debit(500);
 savingsAccount.debit(480);

Listing 12.13 The test program

Initialization

Initial
deposits

Savings account
transactions

Example: the banking system 407
 checkingAccount.debit(500);
 checkingAccount.debit(480);
 checkingAccount.debit(100);

 CheckClearanceSystem.debit(checkingAccount, 400);
 CheckClearanceSystem.debit(checkingAccount, 600);
 }
}

aspect LogInsufficientBalanceException {
 pointcut methodCall() : call(void *.debit(..))
 && within(Test);

 void around() : methodCall() {
 try {
 proceed();
 } catch(InsufficientBalanceException ex) {
 System.out.println(ex);
 }
 }
}

The program in listing 12.13 tests each rule at least once. The LogInsufficient-
BalanceException aspect allows us to write all exception-handling code in one
place. Without it, we would have to write a try/catch block for each method that
could throw InsufficientBalanceException in order to prevent the termination of
the whole program when the exception is thrown. The advice in this aspect prints
the caught exception. Note that we do not rethrow the caught exceptions and there-
fore the flow of the execution of the program is modified. In a non-test environ-
ment, ignoring the exception is seldom desirable. We use the within() pointcut to
ensure that the advice applies only to calls originated from the Test class. Further,
since this aspect only affects the Test class, we put the aspect inside Test.java.

Writing a logging aspect
Our logging aspect, shown in listing 12.14, logs every transaction in the account.
As in previous chapters, we will indent the logging based on the nested call
depth of the method that is being logged by extending the IndentedLogging
aspect developed in chapter 5.

package banking;

import logging.*;

Listing 12.14 An aspect that logs account activities

Checking
account
transactions

Insufficient
balance
condition
log aspect

Check clearance
transactions

408 CHAPTER 12
Implementing business rules
public aspect LogAccountActivities extends IndentedLogging {
 declare precedence : LogAccountActivities, *;

 pointcut accountActivity(Account account, float amount)
 : ((execution(void Account.credit(float))
 || execution(void Account.debit(float)))
 && this(account)
 && args(amount))
 || (execution(void CheckClearanceSystem.*(Account, float))
 && args(account, amount));

 protected pointcut loggedOperations()
 : accountActivity(Account, float);

 void around(Account account, float amount)
 : accountActivity(account, amount) {
 try {
 System.out.println("[" +
 thisJoinPointStaticPart.getSignature().toShortString()
 + "] " + account + " " + amount);
 System.out.println("Before: " + account.getBalance());
 proceed(account, amount);
 } finally {
 System.out.println("After: " + account.getBalance());
 }
 }
}

The accountActivity() pointcut simply captures the Account interface’s debit()
and credit() methods as well as the CheckClearanceSystem class’s methods that
take Account and float arguments. The around advice prints the context informa-
tion before and after the captured transactions.

Running the program
At this point, let’s compile the code without including either a minimum balance
or an overdraft protection aspect. We will, however, include the logging aspect so
that we can understand the steps of the transaction. When we run the test pro-
gram, we get this output:

> ajc banking*.java logging*.java
> java banking.Test
[AccountSimpleImpl.credit(..)] SavingsAccount(1) 1000.0
Before: 0.0
After: 1000.0
[AccountSimpleImpl.credit(..)] CheckingAccount(2) 1000.0
Before: 0.0
After: 1000.0

Depositing
into
accounts

 b

Example: the banking system 409
[AccountSimpleImpl.debit(..)] SavingsAccount(1) 500.0
Before: 1000.0
After: 500.0
[AccountSimpleImpl.debit(..)] SavingsAccount(1) 480.0
Before: 500.0
After: 20.0
[AccountSimpleImpl.debit(..)] CheckingAccount(2) 500.0
Before: 1000.0
After: 500.0
[AccountSimpleImpl.debit(..)] CheckingAccount(2) 480.0
Before: 500.0
After: 20.0
[AccountSimpleImpl.debit(..)] CheckingAccount(2) 100.0
Before: 20.0
After: 20.0
banking.InsufficientBalanceException: Total balance not sufficient
[CheckClearanceSystem.debit(..)] CheckingAccount(2) 400.0
Before: 20.0
 [AccountSimpleImpl.debit(..)] CheckingAccount(2) 400.0
 Before: 20.0
 After: 20.0
After: 20.0
banking.InsufficientBalanceException: Total balance not sufficient
[CheckClearanceSystem.debit(..)] CheckingAccount(2) 600.0
Before: 20.0
 [AccountSimpleImpl.debit(..)] CheckingAccount(2) 600.0
 Before: 20.0
 After: 20.0
After: 20.0
banking.InsufficientBalanceException: Total balance not sufficient

We see from the output that neither a minimum balance nor the overdraft pro-
tection rule is applied.
$1000 is deposited to each account. Because both accounts started with a zero
balance, they now each have $1000.
The savings account is debited $500. This transaction is successful because the
savings account has a $1000 balance. Now with $500 in the account, a debit
request in the amount of $480 is made. This transaction also completes, leaving
the savings account with a $20 balance.
The request to debit $500 from the checking account is followed by a request to
debit $480. Both transactions are successful because the account had $1000 ini-
tially. Now with a $20 balance in the checking account, a debit request in the
amount of $100 is made. The withdrawal amount is less than the available balance,
so we see that the transaction has thrown an InsufficientBalanceException.
The check clearance system debits $400, followed by $600. Because the checking
account had only $20 to begin with, both these operations result in throwing an
InsufficientBalanceException.

Debiting
from the
savings
account

 c

Debiting
from the
checking
account
directly

 d

Debiting from the checking account
through the check clearance system

 e

 b

 c

 d

 e

410 CHAPTER 12
Implementing business rules
Let’s compile the banking classes with the aspects containing the business
rules. We now expect both the minimum balance and overdraft protection rules
to be applied:

> ajc banking*.java logging*.java rule\common*.java rule\java*.java
> java banking.Test
[AccountSimpleImpl.credit(..)] SavingsAccount(1) 1000.0
Before: 0.0
After: 1000.0
[AccountSimpleImpl.credit(..)] CheckingAccount(2) 1000.0
Before: 0.0
After: 1000.0
[AccountSimpleImpl.debit(..)] SavingsAccount(1) 500.0
Before: 1000.0
After: 500.0
[AccountSimpleImpl.debit(..)] SavingsAccount(1) 480.0
Before: 500.0
After: 500.0
banking.InsufficientBalanceException: Minimum balance condition not met
[AccountSimpleImpl.debit(..)] CheckingAccount(2) 500.0
Before: 1000.0
After: 500.0
[AccountSimpleImpl.debit(..)] CheckingAccount(2) 480.0
Before: 500.0
After: 20.0
[AccountSimpleImpl.debit(..)] CheckingAccount(2) 100.0
Before: 20.0
After: 20.0
banking.InsufficientBalanceException: Total balance not sufficient
[CheckClearanceSystem.debit(..)] CheckingAccount(2) 400.0
Before: 20.0
 [AccountSimpleImpl.debit(..)] CheckingAccount(2) 400.0
 Before: 20.0
 [AccountSimpleImpl.debit(..)] SavingsAccount(1) 380.0
 Before: 500.0
 After: 120.0
 [AccountSimpleImpl.credit(..)] CheckingAccount(2) 380.0
 Before: 20.0
 After: 400.0
 After: 0.0
After: 0.0
[CheckClearanceSystem.debit(..)] CheckingAccount(2) 600.0
Before: 0.0
 [AccountSimpleImpl.debit(..)] CheckingAccount(2) 600.0
 Before: 0.0
 After: 0.0
After: 0.0
banking.InsufficientBalanceException:
 Insufficient funds in overdraft accounts

Depositing
into
accounts

 b

Exercising the
minimum
balance rule
for the savings
account

 c

Exercising
the minimum
balance rule
for the
checking
account

 d

Exercising
the overdraft

protection
rule

 e

➥

Implementing business rules with a rule engine 411
Each account receives a deposit of $1000.
This block illustrates the effect of the minimum balance rule, which ensures that
the savings accounts balance does not fall below $25. After a request to debit
$500, the account has a $500 balance. The subsequent request to debit $480
would leave a balance of $20, which is less than the minimum balance require-
ment. We see that the rule that rejects the second debit request is applied.
This block shows that the minimum balance requirement does not apply to the
checking accounts. Therefore, the request to debit $480 that will result in leaving
a $20 balance is fulfilled successfully.
This block shows that the overdraft protection is not applied unless the debit
request is made through the check clearance system. We see that debiting $100
from the checking account (which has a $20 balance) results in throwing an
InsufficientBalanceException. With the checking account having a $20 balance
and the savings account having $500, the check clearance system requests a $400
debit. We now see that the overdraft protection logic is performed. First, $380 is
transferred from the savings account (which was designated to be the overdraft
account). This leaves the checking account with $400—just enough to fulfill the
debit requests. In the end, the checking account is left with a zero balance. We
now observe another request to debit $600 coming in. The overdraft protection
logic is applied; however, because the savings account also does not have enough
money, it throws an exception.

Now we have a simple way to implement business rules for our banking system
without touching any of the core classes. In the next section, we implement the
same rules using a rule engine and aspects.

12.6 Implementing business rules with a rule engine

For complex business rules, a rule engine is often used to handle rule evaluation.
Using a rule engine separates the rule evaluation concern from the core business
logic. However, all core modules that need business rule support still have to
embed code to populate the engine with business objects and invoke the rule eval-
uation. In this section, we examine a solution that allows the core modules to be
completely oblivious to the business rule implementation; they no longer have to
embed any business rule code. This creates an isolation layer between the rule
engine and the business logic, allowing independent evolution of the two.

 At a high level, the rule engine–based solution is similar to our earlier solu-
tion in section 12.5, except that here we employ a rule engine to carry out the
rule evaluation.

 b
 c

 d

 e

412 CHAPTER 12
Implementing business rules
12.6.1 An overview of the rule engine

Rule engines consist of two parts:
■ A mechanism for expressing the rules and facts
■ A fast implementation for evaluating the rules and taking appropriate action

Many of the rule engines are implementations of a well-known Rete algorithm.1

Others use a backward-reasoning algorithm. Using these algorithms, the engines
can evaluate the rules several times faster than the procedural evaluation of
equivalent if-then statements.

 Rules relate the facts pertaining to the current situation to corresponding
actions. The set of facts is also called a knowledge base, or working memory. When it
is run, the engine evaluates the rules based on the facts, and then triggers the
actions associated with the rules that evaluate to true.

 The languages that the engines use to express the rules and facts vary widely
from LISP-like syntax to pseudo-English. They all, however, express the if-then
rules in some engine-specific way. New languages on the horizon, such as
RuleML, offer the possibility of a standard way to express rules independently of
the rule engine.

 Many rule engines are available, ranging from commercial offerings to free or
open source projects. A few of them are implemented in Java. With these
engines, Java objects are loaded into an engine’s working memory as facts, and
the engine can create facts based on those objects as well as invoke actions
expressed in Java on those objects.

12.6.2 Using a rule engine

Implementing business rules using a rule engine involves the following steps:

1 Expressing the rules—Usually this step involves writing a separate file with
rules written in a language understood by the engine. Some engines may
also support programmatic construction of the rules.

2 Expressing the facts—These facts pertain to the state of the business objects
under consideration. For example, in a banking application, facts would
include accounts in a current transaction and the withdrawal amount.

3 Evaluating the rules—Once the engine is loaded with rules and facts, fir-
ing the engine causes the actual evaluation, which ultimately triggers the

1 See http://herzberg.ca.sandia.gov/jess/docs/61/rete.html for a simple explanation of the Rete algorithm.

http://herzberg.ca.sandia.gov/jess/docs/61/rete.html

Implementing business rules with a rule engine 413
actions associated with the rules that evaluated to true. During this evalu-
ation process, the engine may ascertain other derived facts based on
these basic facts and the rules, which help the engine decide what actions
to take. For instance, when examining an account, the engine may deter-
mine that it would fall below the minimum balance if the requested
amount of money were withdrawn; this potential violation of the mini-
mum balance rule may lead to aborting the transaction.

Figure 12.2 shows the collaboration between business objects and the rule engine.
While this figure shows the structural view of a system using a rule engine, figure 12.3
shows the behavioral view of these steps in a sequence diagram.

 At the beginning of this section, we discussed the three steps involved in
using a rule engine. In figure 12.3, the call to initializeRules() corresponds to
the first step of expressing the rules. This step is needed only once to initialize
the rule engine before it can be used. The next two steps are executed each time
an operation is called by the core business logic execution. In step 2, expressing
the facts, we store the facts into the rule engine’s working memory (also referred

Figure 12.2 The rule engine collaborates with the core business logic
through a shared knowledge base known as working memory. Business
objects pertaining to current facts are put into the rule engine’s working
memory before the engine evaluates the rules.

414 CHAPTER 12
Implementing business rules
Figure 12.3 The integration of business logic with business rules in a rule engine using current
mechanisms. Whenever an operation is performed that may cause business rules to be fired, the
operation must load the engine with the facts and ask it to perform the evaluation.

Implementing business rules with a rule engine 415
to as asserting the facts) by calling the assertFact() method on the rule engine.
Then we execute step 3, evaluating the rules, by calling the run() method on the
rule engine.

 A conventional implementation of this scheme would require us to add the
code for executing steps 2 and 3 to each operation in the business classes that
might need to use business rules. Additionally, any change in the business rule
requirements, including the use of a different engine, will necessitate changing
all the operations in the business classes. In the next section, we see how AspectJ
can simplify this process.

12.6.3 Modularizing with AspectJ

Although a rule engine can help you separate the rule evaluation concern from
the rule invocation, you still need to invoke the rule engine from each module in
the system to which business rules may apply. The AspectJ-based solution we
propose here separates the concern of invoking the rule engine from the core
business logic. With this solution, the core business logic is unaware that the busi-
ness rules are being applied and that a rule engine is part of the picture.

Figure 12.4 The collaboration between business logic, coordinating aspects,
and the rule engine. The rule engine is set up with the rules. The aspect
advises the important join points in the business logic to initialize the working
memory of the rule engine and to request that rules be evaluated. The rule
engine executes the actions corresponding to the matching rules.

416 CHAPTER 12
Implementing business rules
Let’s start by specifying a pointcut that captures all significant methods in the busi-
ness classes. The advice to this pointcut populates the working memory of the rule
engine with the context captured by the pointcut. With this approach, no change is
required in the core business logic. Figure 12.4 shows the overall collaboration.

 With the structure for AspectJ-based solution shown in figure 12.4, the coor-
dinating aspects isolate the business logic from the rule engine. The aspects
advise the join points to put the captured context into the working memory of
the rule engine and then run the engine.

Figure 12.5 The integration of business logic with business rules using AspectJ. Advice Executor
is a conceptual object created by the AspectJ compiler through the weaving process that
automatically invokes advice associated with all significant operations in all business classes.

Example: a banking system with a rule engine 417
Figure 12.5 shows a sequence diagram for AspectJ-based business rule imple-
mentation.

 With the AspectJ-based solution, you no longer have to embed the calls to the
rule engine inside modules implementing business logic. All you need to do is
write a rule aspect and embed the logic into its advice. With the rule aspect in
the picture, any replacements of the rule engine or changes to its API (such as
changing the Jess native API to the JSR 94 API) will impact only the rule aspect.
In the next section, we examine an implementation of our banking system that
uses a rule engine.

12.7 Example: a banking system with a rule engine

Earlier, we implemented and tested a solution for implementing rules using
AspectJ. With that implementation, rules were expressed and evaluated using
the Java language, and AspectJ performed the job of integrating the core logic
with these business rules. In real life, business rules are complex enough to war-
rant the use of a specialized rule engine, and since the emphasis of this book is
on real-world applications, we’ll show you how to use AspectJ with a rule engine.
Although in simple applications you could easily embed the rule engine directly
into the core logic, on a large system with hundreds of classes, the AspectJ-based
approach could be a real lifesaver.

 We implement the same business rules that we used in the examples in sec-
tion 12.5. The behavior of the programs we develop will be identical.

12.7.1 A brief overview of Jess (Java Expert System Shell)

Jess, an expert system shell, is a scripting language and a pure Java implementa-
tion of the Rete algorithm from Sandia National Laboratory.2 With Jess, you can
describe facts and rules in a LISP-like language. Each rule—using an if-then like
construct—consists of two parts: rule evaluation and action. The rule evaluation
part tests certain facts and invokes the corresponding actions if they evaluate to
true. While we are using Jess as our rule engine, you should be able to extend the
core idea to other expert systems, such as ILOG JRules and Blaze Advisor.

 We chose Jess as the expert system to illustrate integrating AspectJ and a rule
engine for the following reasons:

2 For more information about Jess, please refer to Ernest Friedman-Hill, Jess in Action (Greenwich, CT:
Manning Publications, 2003).

418 CHAPTER 12
Implementing business rules
■ It’s free—Jess is available free for noncommercial use (you should, of
course, check the license for yourself).

■ It’s Java-based—Jess supports easy interaction between the scripting lan-
guage and Java objects.

■ It supports JSR 94—Jess is part of the reference implementation for JSR 94,
which you are likely to use if you integrate a rule engine with a Java system.

When you invoke Jess from a Java program, it stores Java objects containing the
facts into the rule engine’s working memory, also known as the knowledge base.
It then runs the rule engine, which invokes the Jess script that evaluates the rules
and the facts in the objects and acts on them. When a rule is evaluated to true,
the rule engine invokes the action associated with that rule. As a part of that
action, Jess can interact with other Java objects. It can, for example, set the state
of an object, call a method, or throw an exception.

 We won’t go into more detail since an examination of Jess is beyond the scope
of this book. You can access Jess and its documentation from http://herzberg.ca.
sandia.gov/jess.

12.7.2 Specifying rules

With Jess, you specify the rules in a separate file, using the extension .clp, which
means you can make changes in the rules without having to recompile Java or
AspectJ source code. We provide only a cursory explanation of the code used to
express the rules. In addition, our rule implementation leans toward simplicity
rather than the efficiency of rule evaluation. If rule engine–based implementa-
tion is an important area for you, consult the Jess manual.

 We have broken the business rule script into three listings in order to facilitate
our discussion. Listing 12.15 shows the first portion of the script, in which we
define the facts associated with the current environment.

(deftemplate account (slot availBalance) (slot type))

(defrule account-existance
 (test (neq (fetch current-account) nil))
 =>
 (bind ?account-object (fetch current-account))
 (bind ?account-avail (call ?account-object getAvailableBalance))
 (if (instanceof ?account-object banking.SavingsAccount) then
 (bind ?account-type savings)
 else (if (instanceof ?account-object banking.CheckingAccount) then

Listing 12.15 Defining facts: debitRules.clp

http://herzberg.ca

Example: a banking system with a rule engine 419
 (bind ?account-type checking)))
 (assert (account (type ?account-type)
 (availBalance ?account-avail)))
 (assert (transaction-amount (fetch transaction-amount)))
 (assert (isCheckClearance (fetch checkClearanceTransaction)))
)

Based on the existence of a nonnull account, we define a few derived facts—the
account type, the available balance in the account, and the transaction amount.
Note that each bind statement assigns a value to a variable and each assert state-
ment defines a fact.

 Next, based on the facts, we define the minimum balance rule (listing 12.16).

(defrule minimum-balance
 (account (availBalance ?account-avail) (type savings))
 (transaction-amount ?amount)
 (test (< ?account-avail ?amount))
 =>
 (throw (new banking.InsufficientBalanceException
 "Minimum balance condition not met"))
)

If the rule is fired, it throws an InsufficientBalanceException exception. This
script ensures that the minimum balance rule applies only to savings accounts, as
required by the rule. Therefore, when the rule encounters a checking account,
the rule won’t evaluate to true.

 Last, we implement the overdraft protection rule (listing 12.17).

(defrule overdraft-protection
 (account (availBalance ?account-avail) (type checking))
 (transaction-amount ?amount)
 (isCheckClearance TRUE)
 (test (< ?account-avail ?amount))
 =>
 (bind ?account-object (fetch current-account))
 (bind ?customer (call ?account-object getCustomer))
 (bind $?overdraft-accounts
 (call (call ?customer getOverdraftAccounts) toArray))
 (bind ?transfer-amount (- ?amount ?account-avail))
 (foreach ?overdraft-account $?overdraft-accounts

Listing 12.16 Defining the minimum balance rule: debitRules.clp (continued)

Listing 12.17 Defining the overdraft protection rule: debitRules.clp (continued)

420 CHAPTER 12
Implementing business rules
 (bind ?overdraft-avail
 (call ?overdraft-account getAvailableBalance))
 (if (< ?transfer-amount ?overdraft-avail) then
 (call ?overdraft-account debit ?transfer-amount)
 (call ?account-object credit ?transfer-amount)
 (return)
)
)
 (throw (new banking.InsufficientBalanceException
 "Insufficient funds in overdraft accounts"))
)

If a rule is fired, it will check to see if one of the overdraft accounts has a suffi-
cient balance and will transfer the required amount from it. If no such account is
found, it throws an InsufficientBalanceException exception. Similar to the
minimum balance rule that applied only to savings accounts (listing 12.16), the
overdraft protection rule applies only to checking accounts.

 The debitRules.clp script encapsulates both the rules required by our banking
system. The evaluation of rules depends on three facts: the account object, the
debit amount, and a boolean indicating whether the operation was called from
the check clearance system. In the next section, we develop an aspect that initial-
izes a rule engine with rules in this script, stores the required facts, and invokes
the rule engine.

12.7.3 Understanding the rule invocation aspect

We now need to integrate the core banking system with the rule engine using an
aspect. Let’s capture all the relevant join points and advise them to first store
the associated Java objects in the rule engine and then run the engine. Unlike the
implementation that uses Java alone (section 12.5), we do not have to restrict
the join points based on account type and whether the operation was called from the
check clearance system; the rule script embeds this knowledge. For example, we
don’t have to (and for best practices, should not) restrict the join points to check
for a minimum balance only in the savings accounts. This way, the rule script does
more work and has more flexibility to modify the rules. For instance, if we change
the implementation to require a minimum balance on a checking account in the
future, we will need to modify only the rules file and not the aspect.

 Listing 12.18 shows the aspect that uses Jess to implement business rules for
our banking system.

Example: a banking system with a rule engine 421
package rule.jess;

import jess.*;

import banking.*;
import rule.common.*;

public aspect RuleEngineBasedDebitRulesAspect
 extends AbstractDebitRulesAspect {
 private static final float MINIMUM_BALANCE_REQD = 25;

 Rete _debitRete = new Rete();

 public RuleEngineBasedDebitRulesAspect() {
 try {
 _debitRete.executeCommand(
 "(batch rule/jess/debitRules.clp)");
 } catch (JessException ex) {
 System.err.println(ex);
 }
 }

 public float SavingsAccount.getAvailableBalance() {
 return getBalance() - MINIMUM_BALANCE_REQD;
 }

 before(Account account, float withdrawalAmount)
 throws InsufficientBalanceException
 : debitExecution(account, withdrawalAmount) {
 invokeRules(account, withdrawalAmount, false);
 }

 pointcut checkClearanceTransaction()
 : execution(* CheckClearanceSystem.*(..));

 pointcut checkClearanceDebitExecution(Account account,
 float withdrawalAmount)
 : debitExecution(account, withdrawalAmount)
 && cflow(checkClearanceTransaction());

 before(Account account, float withdrawalAmount)
 throws InsufficientBalanceException
 : checkClearanceDebitExecution(account, withdrawalAmount) {
 invokeRules(account, withdrawalAmount, true);
 }

 private void invokeRules(Account account,
 float withdrawalAmount,
 boolean isCheckClearance)

Listing 12.18 An aspect implementing rules using the Jess rule engine

 b

Initializing
the engine

 c
Introducing
getAvailableBalance()

 d Advising the
debit
transaction

Defining the check
clearance transaction
pointcut

 e

Defining the check
clearance transaction

advice f

 g

422 CHAPTER 12
Implementing business rules
 throws InsufficientBalanceException {
 try {
 _debitRete.store("checkClearanceTransaction",
 new Value(isCheckClearance));
 _debitRete.store("current-account", account);
 _debitRete.store("transaction-amount",
 new Value(withdrawalAmount,
 RU.INTEGER));
 _debitRete.reset();
 _debitRete.run();
 } catch (JessException ex) {
 Throwable originalException = ex.getNextException();
 if (originalException
 instanceof InsufficientBalanceException) {
 throw
 (InsufficientBalanceException)originalException;
 }
 System.err.println(ex);
 }
 }
}

Let’s examine the implementation:
We construct the rule engine object by passing the name of the batch file that
contains the rules: debitRules.clp. The file is loaded and parsed only once.
We introduce getAvailableBalance() into SavingsAccount. It overrides the
method in the base Account class to reduce the available balance by MINIMUM_
BALANCE_REQD.
We advise debit transactions to simply call the invokeRules() method. Notice the
last parameter in the call is set to false, indicating that this transaction is not
originated by a check clearance system. Unlike the pointcut in MinimumBalance-
RuleAspect in listing 12.11, this pointcut is not restricted to the savings account.
Such details are left to the script describing the rules.
The checkClearanceDebitExecution() pointcut restricts the debitExecution()
pointcut to capture only join points that occur in the control flow of a transaction
initiated by the check clearance system.
The advice to checkClearanceDebitExecution() simply calls invokeRules() but
with the last parameter set to true, indicating that this method has been called
by a check clearance system.
The invokeRules() method is the core method that interacts with the engine. It
takes three parameters—the account object, the amount, and a boolean to
indicate whether the operation was invoked by the check clearance system—

Storing facts
and running

the engine

 g

 b

 c

 d

 e

 f

 g

Summary 423
corresponding to the three facts needed by our rule script. It first uses a series of
store() methods on the engine object to store pertinent objects as facts in the
engine’s working memory. It then runs the engine by calling the reset() and
run() methods. It also catches any exceptions thrown by engine operations. In
our implementation, some rules throw exceptions in their action part. The Jess
engine wraps any such exception in a JessException object. This method catches
such an exception and checks if the original exception is InsufficientBalance-
Exception and throws the original exception.

Running the program
To run the program, we simply issue the following commands:

> ajc banking*.java logging*.java rule\common*.java rule\jess*.java
> java banking.Test

Since our rule engine–based aspects are implementing the same rule as before, the
output of the program is exactly the same as in section 12.5.4.

12.8 Summary

Business rules change constantly to respond to the changing nature of business.
To remain competitive in the marketplace, you must have an agile scheme for
implementing those rules. Rule engines serve as part of the solution by provid-
ing simple interfaces for expressing rules and a specialized engine that evaluates
those rules. Rule engines also separate the core business logic from the rule
evaluation logic. With a conventional use of a rule engine, code that invokes the
rule engine’s services is still tangled with the core logic. AspectJ provides the
missing puzzle piece by separating the core logic from the invocation of the rule
engine’s services. The biggest benefit you get is that you maintain the stability of
the core modules, while at the same time you are able to respond quickly to
changes to the rules requirement. Another benefit is that the core system
experts and the rule engine expert can work on their modules independently,
thus improving the overall speed and quality of the system’s implementation.
Further, changes to the underlying rule engine itself do not require any changes
to the core logic.

 Unlike the aspects in the previous chapters, the business rule aspects are inti-
mately aware of the core business logic. Here, the emphasis is not on reusability
of aspects but on modularization of business rules. Despite the dependency of
aspects on the core logic, the use of AspectJ still results in a more maintainable
system by modularizing the concerns.

424 CHAPTER 12
Implementing business rules
 By reducing the cost and time to develop and modify the business rules and
still maintaining the overall stability of the system, using AspectJ for business
rule implementation becomes an attractive proposition. Your business can gain
an edge by responding quickly to customer needs.

13The next step
This chapter concludes the book by
showing how to
■ Approach new problems with AspectJ
■ Apply AspectJ in development phases
■ Evangelize AspectJ
425

426 CHAPTER 13
The next step
As we come to the end of this book, let’s consider some issues and practical solu-
tions that will help your organization embrace AspectJ. Applying a new technology
to your problems is not an easy task, especially if you haven’t seen similar imple-
mentations that have been successful. In this chapter, we discuss how you can use
an aspect-oriented approach to analyze new problems and design solutions. Each
phase in the development cycle offers unique opportunities and challenges for
AspectJ’s application, and we make recommendations for each phase.

13.1 Applying AspectJ to new problems

Once you have committed to using AspectJ in your organization, you will need to
decide whether it is appropriate for each target problem. You must consider an
approach that will incorporate AspectJ while causing minimal destabilization of
the overall system. Typically, you would want to apply AOP solutions to a
restricted subsystem and then, once the solutions are proven, expand the use of
AspectJ to the whole system. In this section, we examine the two phases of apply-
ing AspectJ to a problem: deciding to use it and then actually using it.

13.1.1 Talking the talk
How do you decide whether a concern is better addressed by AOP than the cur-
rent method? In other words, how do you know if a concern is crosscutting? You
can use the following as a guide:

■ Will the non-AOP alternative cause code scattering? Code scattering is usually a
sure sign of a crosscutting concern. If you have to copy and paste nearly
identical code in multiple places or insert complementary blocks of code
for a concern in several modules, AspectJ is a good choice. It will immedi-
ately yield a cleaner design and substantial code savings.

■ Will the non-AOP alternative cause code tangling? Code tangling generally
accompanies code scattering, but you might see code tangling by itself. For
example, you may have just one database module that deals with the cre-
ation and release of database connections, but the module itself may con-
tain resource pooling code tangled with the implementation of the
persistence core concern. Using AspectJ in this case separates the two con-
cepts, makes them less difficult to understand, and allows the easy evolu-
tion of both. It is much like refactoring code into private methods even
when you know there is only one caller. (We discuss aspectual refactoring in
more detail in section 13.2.2.) Over time, you will find more modules that
call for the same separation of crosscutting concerns.

Employing AspectJ in development phases 427
13.1.2 Walking the walk

Once you’ve determined that a certain functionality is a possible crosscutting
concern, and you have decided to use AspectJ to implement it, you can use the
following approach:

1 Study the conventional solution first—In this step, you sketch out, design,
and even prototype the conventional solution. We followed this route in
most chapters in parts 2 and 3. First, we studied the conventional solu-
tion and focused on repeated patterns of code. While illustrating the
conventional solution helped you appreciate the AspectJ solution that
followed, the main purpose was to help you understand the AspectJ
design needed for a better solution. The idea is to first sketch the code
tangling and code scattering, and then modularize it. Once you become
reasonably experienced at this, you may reduce the emphasis on this step
or even eliminate it.

2 Limit the implementation—By limiting the solution to only modules that cur-
rently need the functionality, you eliminate the impact—both positive and
negative—on other modules. We discussed this approach in chapter 7
(resource pooling) and chapter 9 (thread safety in Swing applications). The
goal is to leave as much of the system unaffected as possible and reduce the
testing effort required. To do this, you can either use pointcuts such as
within() to specify only join points in the modules you want to weave, or
you can configure your build system to include only those modules.

3 Let it loose—Once you are comfortable with the solution and its impact,
you should modify the pointcuts or build configurations that have been
limiting the applicability. For example, instead of restricting resource
pooling to only certain modules, you lift those restrictions to let it cross-
cut system wide. This way, if a new module joins the system, it starts ben-
efiting from the aspects right away.

This systematic approach helps you tackle almost any problem with little risk.
Experience will be your best guide in determining how much weight you should
assign each step for your system.

13.2 Employing AspectJ in development phases

Each phase of a software project—design, implementation, testing, and mainte-
nance—emphasizes certain activities. AOP methodology and the AspectJ language,

428 CHAPTER 13
The next step
therefore, play a different role in each of the phases. Further, if you are applying
AspectJ-based implementation of crosscutting concerns in a legacy system, you
will need to deal with issues that are specific to that system. Let’s look at some
typical ways AspectJ helps in each of these situations.

13.2.1 AspectJ in the design phase

If you consider AOP/AspectJ in the design phase, you will reap the maximum
benefits the technology has to offer. From an architectural perspective, the main
benefit AspectJ offers is that it helps you overcome the architect’s dilemma dis-
cussed in chapter 1. Deferring the design and implementation of crosscutting
concerns reduces the design cost, while AOP ensures a smooth integration of
those concerns later.

 Here is a typical way to use AOP/AspectJ in your design phase:

1 Recognize crosscutting concerns—This step is part of mapping requirements
to modules. As a rule of thumb, consider concerns described with an
adjective or adverb starting with “every,” such as “every time” or “every-
where,” as possible crosscutting concerns. Recognizing these concerns
ahead of time lets you avoid the effort needed to modularize crosscutting
concerns in the conventional fashion. Leaving such considerations to
aspects results in improved design.

2 Design core concerns first—Apply standard conventional design techniques
to the core concerns. The better you do this job, the easier it will be to
apply crosscutting concerns, since it will simplify the specification of
weaving rules. For the core parts of each concern, define interfaces with
clear roles. A good interface helps clients access the functionality; an
aspect module is simply one such client. For example, while the logging
concern is crosscutting, a clean logging interface will make for better log-
ging aspects.

3 Design crosscutting concerns—Address the prominent and immediate crosscut-
ting concerns. It is also a good idea to sketch out the crosscutting concerns
that you are aware of but do not need immediately. This approach helps you
avoid overdesign, and since you will use AspectJ to implement the crosscut-
ting concerns, deferring the decision will not lead to huge code changes.

13.2.2 AspectJ in the implementation phase

When you use AspectJ in the implementation phase, you should place additional
emphasis on certain existing common practices, as well as follow a few new

Employing AspectJ in development phases 429
guidelines in order to make the process of implementing the core and crosscut-
ting concerns as easy as possible. There are also several aspectual refactoring
techniques that you can use.

Implementing core concerns
The decision to use AspectJ affects how you will implement the core concerns.
Fortunately, if you are using AOP, much of the process and methodology is
largely unchanged from OOP. Attention to a few practices, however, will make
your job easier. You should follow these common principles regardless of
whether you use AOP/AspectJ:

■ Write well-factored code—Ideally, each operation implements a specific core
functionality. Since in AspectJ most pointcut definitions specify join points
for method invocations, methods can be considered as units of crosscutting
granularity. Therefore, if each method maps to a specific functionality, you
can capture join points at the right level of granularity in your aspects; this
allows you to apply AspectJ consistently throughout your project.

■ Use consistent naming conventions—Sticking to a consistent naming conven-
tion throughout your project will help you write pointcuts that use wild-
cards to capture join points. Using wildcards instead of fully specifying
each join point not only makes writing aspects easier, but also ensures that
the aspects automatically apply to any new modules that you add to the
system later.

In addition to these common “good practices,” here are some guidelines that are
specific to AspectJ:

■ Separate the crosscutting concerns from the core modules in the initial phase—
When you come across a concern that affects multiple modules, apply the
questions in section 13.1.1 to determine whether you should instead use
aspects to implement the functionality. Then, if you find it is a crosscutting
concern, do not implement it along with the core module; instead, plan to
encapsulate it in separate aspects. You may decide to create those aspects
immediately or wait until the functionality is really needed.

■ Watch out for any visible tangling and scattering—Be on the lookout for code
tangling and code scattering while implementing the core concerns; con-
sider them a symptom of possible crosscutting concerns being imple-
mented using OOP techniques that may actually be candidates for AOP.
Initially, you will be looking for well-known crosscutting concerns, such as

430 CHAPTER 13
The next step
logging or resource pooling. Later on, with experience, you will be able to
spot more subtle crosscutting concerns and modularize them.

Implementing crosscutting concerns
When you implement crosscutting concerns, you need to perform the following
tasks. It is typical to iterate over them during the implementation phase:

■ Identify the join points—In this step you identify the places in the code that
need the crosscutting behavior. Then you need to decide the best way to
express the pointcuts that capture the required join points: wildcard-based
pointcuts, name-based pointcuts, control flow–based pointcuts, and so on.

■ Choose underlying technology—To implement a crosscutting concern you
often have to decide what the underlying implementation will be. For
example, for a business rule concern, you have to choose whether to use
the rule engine or the rule API used by the aspects. Your choice will be
largely influenced by the overall system architecture and specific pro-
ject requirements.

■ Design the aspects—In this step you design the aspects themselves. You may
want to consider using one or more of the patterns presented in chapter 8 (as
well as any new patterns that you might have discovered) as a template. Pay
particular attention to using consistent naming conventions for aspects;
that will simplify the process of capturing join points inside the aspects. It
will also help you when you want to specify aspect precedence. Finally, you
also need to decide whether you can create reusable aspects so that you can
leverage them the next time you deal with the same crosscutting concern.

Another issue to consider is how you can organize the aspects so that your build
configurations are flexible and easy to work with. To use aspects in a plug-and-
play manner, you need to separate them according to the functionality they
implement (typically by adding them to separate packages). A proper separation
of aspects will help you to more easily configure the build system to include or
exclude certain aspects in your builds. In order to do this, pay attention to these
two factors:

■ Deployment—Certain aspects are most useful during the development
phase, such as those that perform logging for debug/profiling purposes
and policy enforcement. You will probably want to group these develop-
mental aspects in a separate package so that you can easily add and
remove them from your builds as you choose. That way, you can take

Employing AspectJ in development phases 431
advantage of those aspects during the development phase, while ensuring
they don’t affect the deployed system.

■ Correctness—The most fundamental characteristic of any software system is
its correctness—the other characteristics, such as efficiency, are secondary.
For example, transaction management support is fundamental to the cor-
rectness of the system, whereas efficiency gained by resource pooling is not.
Although you may choose to remove some aspects that you used in develop-
ment from your deployed build system, you must ensure that the aspects
that are necessary for correctness are always included in any build target.

Implementing aspectual refactoring
With recent interest in Extreme Programming, refactoring techniques are gain-
ing well-deserved attention. With AspectJ, you get an added dimension when
refactoring. Consider a check for a common pre- or post-condition for multiple
operations in a class. With conventional refactoring, you would embed the
checks in a method and call it from all the places requiring that check instead of
repeating a block of code in all the places. With AspectJ, you can go one step fur-
ther. Instead of calling the method performing the check from multiple places,
you write an aspect to crosscut that check into all the required methods.

 The differences between refactoring usage and normal usage of AspectJ
include the following:

■ Refactoring aspects are narrowly scoped to crosscut a class or two as opposed
to potentially crosscutting the system.

■ Since refactoring aspects are tightly bound to classes that they are refactor-
ing, it is okay for these aspects to depend on implementation details. In
fact, this kind of aspect is in part an implementation detail of a class.

13.2.3 AspectJ in the testing phase

AspectJ can help with various tasks during the testing phase. Here are a few pos-
sible scenarios that you may want to start with:

■ Creating test cases—Because it can modify behavior without making invasive
changes, AspectJ can help you create test programs. Occasionally, you
need to access the private state of a class to create gray-box test cases.
Using privileged aspects can help you achieve this without changing the
class. This is perhaps one of the few legitimate uses of privileged aspects.
There are other ways AspectJ can help with this testing task; see the
“Resources” section at the end of the book for useful sites to get you started.

432 CHAPTER 13
The next step
■ Implementing performance testing—Many performance problems are uncovered
only during close-to-real deployment. Such an environment is usually not
available during development phases. By enabling performance-monitoring
aspects during beta testing, you can perform dynamic profiling in a near-
real environment. You then have the option to either continue using those
aspects in the deployed system or take them out to avoid overhead.

■ Reporting errors—During the testing phase, when you expect to uncover
problems you can use aspects to collect a useful context, and not just
exception call stacks. When it is time to ship the product, you can simply
take out the context-collecting aspects. With an AspectJ-based approach,
you have a flexible way to collect context and maintain better control over
the inclusion or exclusion of the collection logic.

13.2.4 AspectJ in the maintenance phase

The maintenance phase consists primarily of two activities: adding implementa-
tion to satisfy new requirements and fixing bugs found in the deployed systems.
AspectJ can handle the following tasks during the maintenance phase:

■ Creating protection walls—A big challenge during the maintenance phase is
making sure that new changes do not break other parts of the system. Policy-
enforcement aspects ensure that the new features do not violate the poli-
cies, thus preventing the introduction of new bugs.

■ Implementing new features—Just like during the implementation phase,
AspectJ can implement new crosscutting concerns in a noninvasive man-
ner. Using AspectJ helps minimize code changes to the core of the system
for these concerns.

13.2.5 AspectJ in legacy projects

Legacy projects can be a challenge primarily for two reasons. First, the core code
may lack the clean separation of functionality that allows you to use AspectJ’s
crosscutting constructs. Second, certain crosscutting concerns may already be
implemented using conventional techniques. This may mean that you must first
remove the concern from the core code and put it into aspects before improving
its implementation. Through all these steps, you need to exercise care to avoid
altering the core system behavior in an undesirable way. However, there are some
ways to ease the process:

A word of warning 433
1 Start out with no-commitment aspects—Begin with simple aspects, such as
policy enforcements and logging for debugging. These aspects enable
you to introduce new behavior without requiring any modifications to
the core modules. This way, you minimize the risk of inadvertently affect-
ing the core system behavior. The application of aspects is limited to
development, and you do not need a commitment to use AspectJ in
deployment. This no-commitment, no-risk approach helps you use
AspectJ almost immediately in almost any system.

2 Refactor the code—Any serious use of AspectJ requires that the core code
within each module implement relatively clear responsibilities. Ensuring
that this is the case and refactoring the code if necessary may require
considerable effort. Fortunately, it will help your system regardless of
whether you use AspectJ. Policy-enforcement aspects also help during
refactoring to protect you against inadvertent violations.

3 Refactor the crosscutting concern—While refactoring the core concern, you
will see code-tangling and code-scattering symptoms. Work your way
through the modularization of a few prominent crosscutting concerns. A
test suite will help during this step to ensure continual conformity to core
system functionality.

13.3 A word of warning

Although AspectJ allows you to do wonders when used correctly, it can hurt you
if you are not careful. If you encounter problems, they might be due to one of the
following reasons:

■ Incorrect usage—AOP and AspectJ are not meant to “patch” design and
implementation flaws. For example, if someone forgot to initialize a vari-
able before using it, you could advise its field-access join point to initialize
it first. However, the right thing to do is modify the core module to initial-
ize that variable! Similarly, do not use the privileged aspect just because
you can then access the implementation details of a class.

■ Interaction of multiple aspects—When multiple crosscutting concerns are imple-
mented using separate aspects, they often affect the same join points in the
system. For example, transaction management, authorization, and logging
affect the same set of operations in the system. Understanding such inter-
action and coordinating it using aspect precedence requires you to consider
global system requirements. The use of an IDE with AspectJ integration that

434 CHAPTER 13
The next step
shows the crosscutting view also helps identify multiple aspects affecting
the same join points.

■ Newness of implementation—AspectJ is a new language and a new implemen-
tation. It is remarkably stable, yet you will encounter problems once in a
while that may necessitate a certain workaround. This situation, however,
will improve with time as more and more people start using AspectJ.

13.4 Evangelizing AspectJ

Once you are convinced of AspectJ’s power, the next step is to introduce it to your
project or organization. This step may take a while and it requires persistence:

■ Use it for individual productivity—It is best to avoid trying to convince your
team or management of the virtues of AspectJ while you are still new to it.
During the time you are learning it, your main purpose should be to
improve individual productivity and gain confidence in AspectJ’s applica-
tion. Simple policy-enforcement and logging aspects that improve your
productivity in your own development world are great ways to start. Policy
enforcement will help you avoid getting into trenches in the first place;
logging will help you find your way out if you still manage to get in. Perfor-
mance profiling and studying the impact of resource pooling may be the
next simple applications. With resource pooling, you may use an aspect to
find where you need to introduce it, and then you may implement it using
a conventional solution.

■ Convince management—You must have the support and encouragement of
management if you want your organization to fully embrace AOP and
AspectJ. A good way to convince managers is to illustrate AspectJ’s power
in a before-and-after style by following these steps:

1 Demonstrate good code before implementing functionality. Show how
simple the code looks before adding a concern.

2 Demonstrate bad code after implementing functionality without using
AspectJ. Show how many lines of code you need to write and how invasive
the changes are. Also, present a bug-fixing scenario that will necessitate
changes to many modules.

3 Demonstrate good code after implementing functionality in AspectJ.
Show the cleanliness of the core and new functionality, the reduction in
the number of lines of code, and the simplicity of fixing bugs.

Evangelizing AspectJ 435
Figure 13.1 Here is a way to convince management and your team of the power of AOP and
AspectJ. This figure shows that productivity can be improved during the development phase
and that change management is easier after deployment when you use AspectJ.

436 CHAPTER 13
The next step
Figure 13.1 illustrates the good-bad-good approach. The flow on the
left side shows how a system changes when implementing a crosscutting
concern using conventional techniques, whereas the right side shows
how AOP achieves the same goal.

■ Convince your team—Most software products are developed in a team.
Therefore, it helps if all the team members are at least aware of AspectJ
and its value. Showing how policy-enforcement aspects catch errors even
before testing can be an effective eye-opener. The good-bad-good trans-
formation also helps convince the team members of AspectJ’s power.

■ Find a killer application—You may come across a situation where your appli-
cation needs to implement functionality, but it is postponed to a later
release because it will require changing so many modules. Analyze the situ-
ation. If you find that you can use AspectJ to prevent such invasive changes
and still add the needed functionality, you should try it out. The high visi-
bility of the solution adds a “wow” factor and is a very effective way to
bring in AspectJ for good.

■ Get training—Grab any training opportunities you can—books, articles,
seminars, formal classroom training, bringing in a mentor, and so forth.
This book, of course, is meant to serve as one such training opportunity.

13.5 Parting thoughts

Here are some additional recommendations as you move forward on your path
toward becoming an AOP and AspectJ expert:

■ Start simple—AspectJ is a new language and has its own nuances that must be
understood before you are comfortable with it. So, start simple. In particular,
do not worry about reusable aspects in the beginning; adding these features
later, even as an afterthought, is usually better than paying an upfront cost.
While most aspects in this book are reusable, I did not design them that way
in my first attempts. The typical process is to come up with the overall idea
and design, implement a simple way that solves the problem at hand, and
then see how to generalize it into reusable aspects. Remember your first
encounter with OOP? You most likely did not create interfaces, function
objects, and delegate objects right away. You probably used it only to encap-
sulate the implementation at first. The same applies to AOP adoption.

■ Join the community—Learning from other people’s experience can be quite
useful. There are a couple of good mailing lists that you should consider

Parting thoughts 437
joining—visit http://eclipse.org/aspectj and http://aosd.net. If you are having
a problem, chances are someone has already faced the problem and per-
haps solved it. I will be available on Author Online at http://www.manning.com/
laddad to help you with your questions.

■ View AOP/AspectJ as augmenting technology—Use the underlying conventional
classes as much as possible. Throughout the book, we based our solutions
on available technologies: logging toolkits for logging, rule engines for
business rule implementation, JAAS for authentication and authorization,
and so on. These technologies have been used by thousands of developers
worldwide for several years, and such heavy usage results in mature solu-
tions. When you use them, you can then use AspectJ to fill in the missing
pieces of these technologies.

■ Experiment—I learned most techniques through experimentation. Start
with the examples in this book. Try them outside of real projects. You will
get valuable insight into the AOP philosophy and its logistical issues. You
will gradually become more comfortable with the new technology; then
you can solve the more complex problems.

■ Develop a repertoire of reusable aspects—When it comes to productivity, nothing
beats reusing modules that have already been developed. Many crosscutting
concerns apply not only to multiple modules, but also to multiple systems.
As you gain more experience, start paying attention to reusable parts and
create reusable libraries to benefit various projects. However, keep in mind
that you should always start simple.

Aspect-oriented programming helps to bring order to the chaos introduced by
crosscutting concerns. When you use it, the design is more clearly mapped to the
implementation. However, AOP is not a silver bullet that will solve all your pro-
gramming problems. Nevertheless, we have to make progress—one step at a
time. I expect many more changes over the next decade in programming meth-
odologies and languages in the direction that AOP started. These changes are
what I love about this profession—there’s always something new, and we’re always
in search of something newer!

http://eclipse.org/aspectj
http://aosd.net
http://www.manning.com/

AThe AspectJ compiler
This appendix covers
■ Downloading and setting up the AspectJ

compiler
■ Compiling source files
■ Building and using aspect libraries
438

Downloading and setting up 439
The most fundamental tool for the AspectJ language is its compiler. For simple
uses, the AspectJ compiler behaves like any Java compiler. However, it offers sev-
eral more choices for enabling crosscutting implementation in AspectJ. In this
appendix, we briefly examine the install and setup procedure for AspectJ
version 1.1. We also examine compiler options and explain how you can use
them to suit your needs.

A.1 Downloading and setting up

In this section, we provide installation instructions and show you how to set up
your system to use AspectJ. We assume that you have already installed a compat-
ible version of JDK. Depending on the version you downloaded, the details (such
as filenames) may vary slightly:

1 Download—Download AspectJ tools, including the compiler, from http://
eclipse.org/aspectj/.

2 Install—The downloaded JAR file is a self-executing installation file. You
can execute it by issuing this command:

> java –jar aspectj1.1.jar

The installer will present a wizard asking you where you want to install
AspectJ and where your current JDK installation is located. Simply follow
the instructions. When the installation finishes, it will have extracted the
necessary files as well as created batch files and shell scripts to match
your environment.

3 Modify the environment—The installer outlines this step in the final screen.
This step is not strictly necessary, but performing it will make working
with the tools easier. It asks you to modify your CLASSPATH environment
variable to include aspectjrt.jar. You may include aspectjtools.jar to ease
work with Ant scripts. You should also modify your PATH environment
variable to include AspectJ’s bin directory.1

1 If you want to change your environment on a Windows 2000 or Windows XP machine, right-click on
My Computer, click Properties, and select the Advanced tab. Then, click the Environment Variables
button. From there, you can edit or create system variables such as PATH and CLASSPATH. On UNIX
and Linux systems, you may modify the login script file appropriate for your shell.

http://

440 APPENDIX A
The AspectJ compiler
A.2 An overview of the compiler

The AspectJ compiler (ajc) is based on an open-source, industry-strength com-
piler created as a part of the Eclipse IDE. While it is one of the Eclipse technol-
ogy projects, the AspectJ compiler is not tied to the Eclipse IDE in other ways—it
works just as well with other IDEs, such as the NetBeans and the emacs JDEE, as
well as command-line tools.

 Given that AspectJ is a superset of Java, the AspectJ compiler is a superset of a
Java compiler. Therefore, you can use ajc as a replacement for the Java compiler.
The AspectJ compiler can accept input from source files and JAR files containing
precompiled sources. The output produced by ajc can be classes or JAR files that
are fully compliant with the Java byte-code specification. Therefore, you can use
any compliant virtual machine to execute the program produced by ajc.

 As you can with a Java compiler, you can pass certain options to ajc. Table A.1
summarizes the important options that are common between ajc and javac.2

The AspectJ compiler also offers options available from the underlying Eclipse
compiler. You can see the options available to ajc’s invocation by issuing ajc
without any argument. In the remainder of this appendix, we will examine the
AspectJ-specific options.

Table A.1 Compiler options

Option Arguments Effect

-classpath Directories and JAR files Specifies where to find the user’s class files.

-d The directory Specifies the output root directory for class files pro-
duced by the compiler.

-target 1.1 (the default) or 1.2 Specifies the format for the class files generated.

-source 1.3 or 1.4 Specifies the mode for compiling sources. Specifying
1.4 enables assertion functionality.

-deprecation None Warns about the use of deprecated types or members.

-g [lines,vars,source]
(the default) or none

Specifies the level of debugging information generated.

2 Throughout this appendix, we use the term javac to denote a Java compiler such as JDK javac, the
Jikes compiler, and the Eclipse Java compiler.

Compiling source directories 441
A.3 Compiling source files

The simplest way to compile source files using ajc is to pass it the list of source files.
This option is similar to using a Java compiler (such as javac) to compile Java
sources. In this book, we have used this method to compile all our examples:

> ajc shopping*.java tracing\TraceAspect.java

Note one important difference between javac and ajc. With javac, you can com-
pile all source files together or each source file individually without any differ-
ence in the output. This is not the case with ajc; instead, you must pass all the
input files together in one invocation. For example, the following two commands
will not produce the same result as the earlier command:

> ajc shopping*.java
> ajc tracing\TraceAspect.java

In this case, the apparent intention is to weave tracing into the shopping-related
classes. However, TraceAspect.java is not included while compiling the shop-
ping classes, so no such weaving will occur.

 You can execute the classes produced by the compiler using any Java virtual
machine. The following command executes the Test class compiled using ajc.
You should have aspectjrt.jar in your classpath, as we discussed in A.1. If you
don’t, you will need to pass it explicitly to java using the –classpath option:

> java Test

A.4 Compiling source directories

You can specify the root directories of the source files you want to compile by
passing the list of directories to the -sourceroots option. The AspectJ compiler
will then compile all the source files under each specified directory and all their
subdirectories. The following command will compile all the source files that have
F:\aspectj-book\appendixA\sectionA.4\shopping or F:\aspectj-book\appen-
dixA\sectionA.4\tracing as an ancestor directory:

> ajc -sourceroots F:\aspectj-book\appendixA\sectionA.4\shopping;
 F:\aspectj-book\appendixA\sectionA.4\tracing

The separator character between the multiple source directories specified must
match the native path separator. On Windows systems, it is a semicolon (;),
whereas on UNIX systems, it is a colon (:).

➥

442 APPENDIX A
The AspectJ compiler
A.5 Weaving into JAR files

AspectJ can weave aspects into previously compiled source files (compiled with
either javac or ajc) that are in a JAR. This enables you to apply crosscutting con-
cerns without needing access to the source files. With this option, for example,
you can weave aspects into third-party libraries.

 The following command weaves the TraceAspect into all the class files in
shopping.jar. The output of this command is the creation of class files, each with
the tracing aspect woven in. The shopping.jar file itself remains unchanged:

> ajc –injars shopping.jar tracing\TraceAspect.java

You can use the –outjar option to create a JAR file instead of individual class files:

> ajc –injars shopping.jar tracing\TraceAspect.java
 –outjar tracedShopping.jar

The resulting tracedShopping.jar file will contain all the class files with the Trace-
Aspect woven into them.

 You may also use the –sourceroots option to specify the directories contain-
ing source files that you want to compile with the JAR files specified in –injars. If
the directories specified in –sourceroots contain aspects, then those aspects will
be woven into the JAR files. The following command compiles shopping.jar
along with the sources in the tracing directory, weaving in any aspect from it:

> ajc –injars shopping.jar –sourceroots tracing

You may use the –outjar option in the previous command to produce a JAR file:

> ajc –injars shopping.jar –sourceroots tracing
 –outjar tracedShopping.jar

The input JAR files contain the class files that have been compiled with either
javac or ajc. If the corresponding source files are pure Java, then you may simply
use javac to compile those files. The possibility of using javac in the initial build
simplifies the process of integrating AspectJ into an existing system. You can
leave your build process unchanged until after you create the JAR files for pure
Java source files, and then you can include an additional build step to weave the
needed aspects into the JAR files. Figure A.1 depicts this process.

➥

➥

Creating aspect libraries 443
A.6 Creating aspect libraries

The AspectJ compiler allows you to create an aspect library in the form of a JAR
file. This functionality is especially important if you have to provide reusable
aspects for internal or external use without giving the source code. You can now
distribute JAR files that contain the aspects as well as any supporting interfaces
and classes. The following command creates an aspect library named tracing.jar
by compiling all the sources under F:\aspectj-book\appendixA\sectionA.6\tracing:

> ajc –sourceroots F:\aspectj-book\appendixA\sectionA.6\tracing
 –outjar tracing.jar

AspectJ requires that an aspect can only weave an interface, class, or another
aspect once. This means that the classes and aspects in the library JAR file must
not have previously been woven during the creation of the library. If they have,
when you try to build the final system incorporating the library, you will get com-
piler errors. You need to consider this issue only if some of the aspects are

Figure A.1 Augmenting the existing build system to weave in the aspects

➥

444 APPENDIX A
The AspectJ compiler
concrete aspects (only concrete aspects are woven). In other cases, you can use the
–XnoWeave option to compile the sources but prevent the weaving. The following
command specifies that the aspects and classes of the library should not be
woven during the creation of the library:

> ajc -XnoWeave
 –sourceroots F:\aspectj-book\appendixA\sectionA.6\tracing
 –outjar tracing.jar

It is always safe to use the –XnoWeave option when you’re creating an aspect
library. By specifying no weaving during library creation, you postpone weaving
until the final build.

A.7 Using aspect libraries

To use an aspect library, you specify the library JAR file using the –aspectpath
option. The compiler then searches for all the aspects in each specified JAR file and
weaves them into the specified code. The following command weaves the aspects
that are inside tracing.jar into all the source files inside the shopping directory:

> ajc shopping*.java –aspectpath tracing.jar

Since this command does not specify tracing.jar as one of the input files, no weav-
ing will occur for the interfaces, classes, and aspects in tracing.jar. If the constitu-
ents of the library itself need to be woven, possibly by other aspects, you must
specify the aspect library itself as input by using the –injars option. If a library
contains support classes, specifying the library JAR file as an input will cause
AspectJ to weave all the aspects specified in –aspectpath to those classes as well:

> ajc shopping*.java –injars tracing.jar –aspectpath tracing.jar

This command will weave the aspects inside the tracing.jar file into all of the
class files in the tracing.jar file and all the source files in the shopping directory.
Figure A.2 shows how an aspect library is created and used.

A.8 Utilizing incremental compilation mode

Compiling all the files in a large project takes a lot of time. Because ajc needs to
perform additional work compared to a pure Java compiler, it will take even
longer. With plain Java, for most kinds of modification all you have to do is com-
pile the modified source files. With AspectJ, however, you must recompile the
whole system, which increases compilation time. The time it takes to recompile

➥
➥

Utilizing incremental compilation mode 445
the source code can be an important issue during the development phase, when
it is common to make a few modifications at a time and observe their effect.

 To reduce the compilation time with each modification, the AspectJ compiler
offers incremental mode. With this option, ajc keeps track of the files that need to be
recompiled, thus avoiding the recompilation of all the classes for each modification.

 When using incremental mode, ajc will first fully compile the files supplied
and then wait for the user to press either Enter (to recompile), r (to rebuild), or q
(to quit the process). The following command launches ajc in incremental mode.
The compiler first compiles all the source files in the two directories: F:\aspectj-book\
appendixA\sectionA.8\shopping and F:\aspectj-book\appendixA\sectionA.8\tracing.
Then it will monitor changes to those source files, compiling them as needed
whenever the user presses Enter:

> ajc -incremental
 -sourceroots F:\aspectj-book\appendixA\sectionA.8\shopping;
 F:\aspectj-book\appendixA\sectionA.8\tracing

Figure A.2 The creation of an aspect library involves the use of the –outjar and
–XnoWeave options. When you use the library, you need the –aspectpath and
–injars options. The output of the system could be multiple class files or a JAR
file, depending on how you use the –outjar option.

➥
➥

446 APPENDIX A
The AspectJ compiler
 press enter to recompile, r to rebuild, q to quit:

 press enter to recompile, r to rebuild, q to quit:

 press enter to recompile, r to rebuild, q to quit:
 r
 press enter to recompile, r to rebuild, q to quit:

 press enter to recompile, r to rebuild, q to quit:
q
>

Keep in mind that the -incremental option tracks changes only to source files,
not binary JAR files. In addition, you must specify the –sourceroots option.

A.9 Producing useful warnings

The AspectJ compiler offers an option that when enabled warns you of potential
problems with your code. The following command issues a warning when you
misspell TraceAspect as TaceAspect. Without such warnings, tracking down a prob-
lem like this would be time-consuming:

> ajc -Xlint tracing*.java -outjar tracing.jar
F:\aspectj-book\appendixA\sectionA.9\tracing\TraceAspect.java:10

 no match for this type name:
 TaceAspect [Xlint:invalidAbsoluteTypeName]

1 warning

TIP The warnings offered by the –Xlint option are so useful that many de-
velopers make –Xlint the default option by modifying ajc.bat and the
ajc shell script in AspectJ.

➥
➥

BUnderstanding
Ant integration
This appendix covers
■ Setting up Ant to work with AspectJ
■ Compiling AspectJ sources with Ant
■ Creating and using AspectJ libraries with Ant
447

448 APPENDIX B
Understanding Ant integration
Ant is an increasingly popular Java-based build system that uses XML-based build
files to define rules. The core concepts in Ant include the project, the target, and
the task. A project in a build file is the root element that nests all other elements. A
target is a set of operations that need to be performed, whereas a task is the logic
that needs to be executed to carry out an operation. A typical Ant build file con-
tains such tasks as compiling the sources, running the system, and executing test
suites. By specifying the commonly performed tasks in an Ant build file, you can
simplify the build job. For more detailed information about Ant, please refer to the
books listed in “Resources.”

 With Ant, a new functionality is supported by defining a new task. AspectJ
bundles Ant tasks to enable you to compile source files using the AspectJ com-
piler (ajc). Most of the supported attributes in an AspectJ Ant task correspond
directly to the options available to ajc (see appendix A). Once you understand
each option’s role, writing an Ant build file should be straightforward. Owing to
the similarity between the AspectJ and Java compilers, for the most part an Ant
build file is similar in structure to one using a <javac> Ant task. In this appendix,
we examine ways you can use an AspectJ Ant task. For more details, refer to the
documentation supplied with the AspectJ download.

 Appendix A provides an overview of various compilation options that are
available with ajc, and we provide examples of performing tasks, such as compil-
ing source files and creating aspect libraries. In this appendix, we show you how
to use Ant to perform the same tasks.

B.1 Compiling source files using an Ant task

In section A.3, you saw how to use ajc to compile specified source files. Here
you’ll learn how to carry out the same job using Ant targets. In the following
build file, we assume that you have aspectjtools.jar and aspectjrt.jar (both
available as a part of the AspectJ installation) in your classpath. (Later we will
examine ways of handling situations when you do not want these JAR files in
the classpath.)

 Let’s compile all the source files in a directory, using an Ant build file:

<project name="shopping-tracing" default="run">
 <taskdef
 resource=
 "org/aspectj/tools/ant/taskdefs/aspectjTaskdefs.properties">
 </taskdef>

Defining the
compilation task

 b

Compiling source files using an Ant task 449
 <target name="compile">
 <mkdir dir="dest"/>
 <iajc destdir="dest">
 <sourceroots>
 <pathelement location="shopping"/>
 <pathelement location="tracing"/>
 </sourceroots>
 </iajc>
 </target>

 <target name="run" depends="compile">
 <java classname="Test">
 <classpath>
 <pathelement location="dest"/>
 <pathelement path="${java.class.path}"/>
 </classpath>
 </java>
 </target>

</project>

Here are the details:
We make Aspect Ant tasks available by setting the value of the resource attribute
to the org/aspectj/tools/ant/taskdefs/aspectjTaskdefs.properties file. This proper-
ties file, which is part of aspectjtools.jar, specifies the mapping of the Ant com-
pile tasks to their corresponding classes. The resource file defines two tasks: ajc,
which supports most options available in AspectJ 1.0, and iajc, which supports
new options in AspectJ 1.1, including incremental compilation.
We define the compile target by using the iajc task and specifying the sourceroots
nested element. Here we specify two source directories: shopping and tracing.
We define the run target using the java task element and specify Test as the class
to execute.

To compile and run the program, issue the ant command by itself. Note that
when you do not specify a target, Ant runs the default target—run in our case.
Because that target depends on the compile target, it compiles the sources prior
to running:

> ant
Buildfile: build.xml

compile:
 [mkdir] Created dir: F:\aspectj-book\appendixB\sectionB.1\dest

run:
 [java] Apr 10, 2003 12:09:35 AM Test main
 [java] INFO: Entering

Compiling
sources

 c

Running the
program

 d

 b

 c

 d

450 APPENDIX B
Understanding Ant integration
 [java] Apr 10, 2003 12:09:35 AM Inventory addItem
 [java] INFO: Entering
 [java] Apr 10, 2003 12:09:35 AM Inventory addItem
 [java] INFO: Entering
 [java] Apr 10, 2003 12:09:35 AM Inventory addItem
 [java] INFO: Entering
 [java] Apr 10, 2003 12:09:35 AM ShoppingCartOperator
 addShoppingCartItem
 [java] INFO: Entering
 [java] Apr 10, 2003 12:09:35 AM Inventory removeItem
 [java] INFO: Entering
 [java] Apr 10, 2003 12:09:35 AM ShoppingCart addItem
 [java] INFO: Entering
 [java] Apr 10, 2003 12:09:35 AM ShoppingCartOperator
 addShoppingCartItem
 [java] INFO: Entering
 [java] Apr 10, 2003 12:09:35 AM Inventory removeItem
 [java] INFO: Entering
 [java] Apr 10, 2003 12:09:35 AM ShoppingCart addItem
 [java] INFO: Entering

BUILD SUCCESSFUL
Total time: 5 seconds

If you want to compile the source files without running the program, you can
issue the following command:

> ant compile
Buildfile: build.xml

compile:
 [mkdir] Created dir: F:\aspectj-book\appendixB\sectionB.1\dest

BUILD SUCCESSFUL
Total time: 5 seconds

If you do not have aspectjtools.jar as a part of your CLASSPATH environment vari-
able, in order to make the resource properties file available to the Ant build file,
you must copy aspectjtools.jar to $(ANT_HOME)/lib. The other choice is to spec-
ify the classpath nested element for the taskdef element, as shown here:

<taskdef
 resource=
 "org/aspectj/tools/ant/taskdefs/aspectjTaskdefs.properties">
 <classpath>
 <pathelement
 location="${aspectj.dir}/lib/aspectjtools.jar"/>
 </classpath>
</taskdef>

➥

➥

Weaving into JAR files using an Ant task 451
You will then have to specify the value for aspectj.dir either directly inside the
build file or by passing it to the Ant invocation:

> ant -Daspectj.dir=C:\aspectj1.1 compile

Now let’s turn our attention to the situation when your classpath does not
include aspectjrt.jar. In this case, you will have to specify it explicitly to the com-
pile and run targets, as shown here:

<target name="compile">
 <mkdir dir="dest"/>
 <iajc destdir="dest">
 <sourceroots>
 <pathelement location="shopping"/>
 <pathelement location="tracing"/>
 </sourceroots>
 <classpath>
 <pathelement path="${java.class.path}"/>
 <pathelement location="${aspectj.dir}/lib/aspectjrt.jar"/>
 </classpath>
 </iajc>
</target>

<target name="run" depends="compile">
 <java classname="Test">
 <classpath>
 <pathelement location="dest"/>
 <pathelement path="${java.class.path}"/>
 <pathelement location="${aspectj.dir}/lib/aspectjrt.jar"/>
 </classpath>
 </java>
</target>

Just as in case of aspectjtools.jar, you must supply the value for aspectj.dir on the
Ant command line, as follows:

> ant -Daspectj.dir=C:\aspectj1.1 compile

Now that you are familiar with compiling and running programs written in
AspectJ, let’s see how you can use the AspectJ Ant task for other jobs, such as cre-
ating and using libraries. We’ll also look at setting the AspectJ Ant task to com-
pile source files incrementally.

B.2 Weaving into JAR files using an Ant task

In section A.5, we studied the ajc command-line options for weaving aspects into
a JAR file. In this section, we examine the Ant way of performing the same task.

452 APPENDIX B
Understanding Ant integration
The following Ant target weaves the aspects in the tracing directory into the
shopping.jar file:

<target name="weave" depends="shopping-jar">
 <mkdir dir="dest"/>
 <iajc destdir="dest">
 <injars>
 <pathelement location="shopping.jar"/>
 </injars>
 <sourceroots>
 <pathelement location="tracing"/>
 </sourceroots>
 </iajc>
</target>

If the input JAR files contain pure Java sources, you could use the javac task to
compile them instead of iajc. For example, the shopping.jar file could be pro-
duced through the following Ant targets:

<target name="compile-shopping">
 <mkdir dir="dest/shopping"/>
 <javac destdir="dest/shopping">
 <src>
 <pathelement location="shopping"/>
 </src>
 </javac>
</target>

<target name="shopping-jar" depends="compile-shopping">
 <jar destfile="shopping.jar"
 basedir="dest/shopping"/>
</target>

B.3 Creating aspect libraries using an Ant task

Let’s turn our focus to creating aspect libraries using Ant, which is equivalent in
functionality to the command-line way in section A.6. Using the outjar attribute
and the XnoWeave attribute, you can create an aspect library, which can be later
woven into the rest of the system. The following Ant target creates tracing.jar by
compiling all the sources inside the tracing directory:

<target name="trace-lib">
 <iajc outjar="tracing.jar" XnoWeave="true">
 <sourceroots>
 <pathelement location="tracing"/>
 </sourceroots>
 </iajc>
</target>

Utilizing incremental compilation using an Ant task 453
Note that the XnoWeave attribute has the same function as the –XnoWeave option
discussed in section A.6.

B.4 Utilizing aspect libraries using an Ant task

In section A.7, we explored command-line options for using an aspect library
created by employing the technique described in section A.6 (or B.3). Perform-
ing the same task in Ant requires you to specify the corresponding JAR file for
the aspect library in the aspectpath nested element in the iajc task. If you need
to weave the aspects inside the library JAR file, specify them inside the injars
element as well:

<target name="compile" depends="trace-lib">
 <mkdir dir="dest"/>
 <iajc destdir="dest">
 <sourceroots>
 <pathelement location="shopping"/>
 </sourceroots>
 <injars>
 <pathelement location="tracing.jar"/>
 </injars>
 <aspectpath>
 <pathelement location="tracing.jar"/>
 </aspectpath>
 </iajc>
</target>

You could weave the aspects in a library into a JAR file by specifying the target
JAR file in the injars nested element:

<target name="compile" depends="trace-lib,shopping-jar">
 <mkdir dir="dest"/>
 <iajc destdir="dest">
 <injars>
 <pathelement location="shopping.jar"/>
 <pathelement location="tracing.jar"/>
 </injars>
 <aspectpath>
 <pathelement location="tracing.jar"/>
 </aspectpath>
 </iajc>
</target>

B.5 Utilizing incremental compilation using an Ant task

The AspectJ Ant task can be set to compile the source files incrementally, based
on user input. Just like the –incremental option to ajc (discussed in section A.8),

454 APPENDIX B
Understanding Ant integration
the incremental mode of the AspectJ Ant task tracks the files specified using the
sourceroots element (or the sourceRoots or sourceRootsList attribute).

 The following Ant task compiles the source files under the shopping and trac-
ing directories in incremental mode:

<target name="inc-compile">
 <mkdir dir="dest"/>
 <iajc destdir="dest" incremental="true">
 <sourceroots>
 <pathelement location="shopping"/>
 <pathelement location="tracing"/>
 </sourceroots>
 </iajc>
</target>

Invoking the target results in a full initial compilation followed by a request for
user input. The user must then press Enter (to recompile), r (to rebuild), or q (to
quit the process):

> ant inc-compile
Buildfile: build.xml

inc-compile:
 [mkdir] Created dir: F:\aspectj-book\appendixB\sectionB.5\dest
 [iajc] press enter to recompile, r to rebuild, q to quit:

 [iajc] press enter to recompile, r to rebuild, q to quit:
r
 [iajc] press enter to recompile, r to rebuild, q to quit:

 [iajc] press enter to recompile, r to rebuild, q to quit:
q

BUILD SUCCESSFUL
Total time: 22 seconds

For large projects, you will notice a significantly reduced recompilation time
compared to the initial compilation.

resources
Here we’ve compiled a listing of books, papers, and online resources
related to AOP and AspectJ. In addition, we’ve listed sites where you can
find the technologies used in our examples. We’ve also included URLs to
useful mailing lists to which you can subscribe.

Recommended reading
Books
Beck, K. Extreme Programming Explained: Embrace Change. Reading, Mass.: Addison-

Wesley, 2000.

Bloch, Joshua. Effective Java Programming Language Guide. Boston: Addison-Wesley
Professional, 2001.

Czarnecki, Krzysztof, and Ulrich Eisenecker. Generative Programming: Methods, Tech-
niques, and Applications. Reading, Mass.: Addison-Wesley, 2000.

Fowler, Martin. Refactoring: Improving the Design of Existing Code. Reading, Mass.:
Addison-Wesley, 1999.

Friedman-Hill, Ernest. Jess in Action. Greenwich, Conn.: Manning Publications,
2003.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns–
Elements of Reusable Object-Oriented Software. Reading, Mass.: Addison-Wesley,
1994.
455

456 RESOURCES
Hatcher, Erik and Steve Loughran. Java Development with Ant. Greenwich, Conn.: Man-
ning Publications, 2003.

Kiczales, Gregor, Jim Des Rivieres, and Daniel Bobrow. The Art of the Metaobject Protocol.
Cambridge, Mass.: MIT Press, 1991.

Lea, Doug. Concurrent Programming in Java: Design Principles and Patterns, 2d ed. Reading,
Mass.: Addison-Wesley, 1999.

Lieberherr, Karl J. Adaptive Object-Oriented Software: The Demeter Method with Propagation
Patterns. Boston: PWS Publishing Co., 1996. Also available online at http://www.
ccs.neu.edu/research/demeter/book/book-download.html.

Schmidt, Douglas C., Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked Objects. New York:
John Wiley & Sons, 2000.

Tate, Bruce. Bitter Java. Greenwich, Conn.: Manning Publications, 2002.
Tate, Bruce, Mike Clark, Bob Lee, and Patrick Linskey. Bitter EJB. Greenwich, Conn.:

Manning Publications, 2003.

Journal articles
Aksit, M., B. Tekinerdogan, and L. Bergmans. “Achieving Adaptability through Separation

and Composition of Concerns.” In Special Issues in Object-Oriented Programming, M. Muhl-
hauser (ed.), dpunkt verlag, pp. 12–23, 1996.

Hannemann, Jan, and Gregor Kiczales. Design Pattern Implementation in Java and AspectJ. In
Proceedings of the 17th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pp. 161–73, November, 2002. Also available
online at http://www.cs.ubc.ca/~gregor/hannemann-OOPSLA2002-aop-patterns.pdf.

Janzen, D., and K. De Volder. “Navigating and Querying Code without Getting Lost.” In
Proceedings of the 2nd International Conference on Aspect-Oriented Software Development,
2003: pp. 178–87.

Kiczales, Gregor, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. “Aspect-Oriented Programming.” In Proceedings
of European Conference on Object-Oriented Programming (ECOOP'97), June 1997. Available
online at: ftp://ftp.ccs.neu.edu/pub/people/crista/publications/ecoop97/for-web.pdf.

Ossher, Harold, William Harrison, Frank Budinsky, and Ian Simmonds. “Subject-
Oriented Programming: Supporting Decentralized Development of Objects.” In Pro-
ceedings of the 7th IBM Conference on Object-Oriented Technology, July, 1994.

Parnas, David Longe. “On the Criteria to Be Used in Decomposing Systems into Mod-
ules.” In Communications of the ACM, 15(12): 1053–58, December 1972.

Walker, Robert J., Elisa L.A. Baniassad, and Gail C. Murphy. “An Initial Assessment of
Aspect-oriented Programming.” In Proceedings of the 21st International Conference on
Software Engineering, May, 1999.

http://www
http://www.cs.ubc.ca/~gregor/hannemann-OOPSLA2002-aop-patterns.pdf
ftp://ftp.ccs.neu.edu/pub/people/crista/publications/ecoop97/for-web.pdf

RESOURCES 457
Online resources
Kircher, Michael, Prashant Jain, and Angelo Corsaro. “XP + AOP = Better Software?” Avail-

able online at http://www.xp2003.org/xp2002/atti/Kircher-Jain-XPplusAOPBetterSoftware.
pdf.

Laddad, Ramnivas. “I Want My AOP!, Part 1.” In JavaWorld, January, 2002. Available
online at http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect.html.

——— “I Want My AOP!, Part 2.” In JavaWorld, March, 2002. Available online at http://
www.javaworld.com/javaworld/jw-03-2002/jw-0301-aspect2.html.

——— “I Want My AOP!, Part 3.” In JavaWorld, April, 2002. Available online at http://
www.javaworld.com/javaworld/jw-04-2002/jw-0412-aspect3.html.

Lesiecki, Nicholas. “Test Flexibly with AspectJ and Mock Objects.” IBM Developer
Works, May 2002. Available online at http://www-106.ibm.com/developerworks/java/
library/j-aspectj2/.

Monk, Simon, and Stephen Hall. “Virtual Mock Objects Using AspectJ with JUnit.”
Available online at http://www.xprogramming.com/xpmag/virtualMockObjects.htm.

Ossher, H., and P. Tarr. “Multi-Dimensional Separation of Concerns Using Hyperspaces.”
IBM Research Report 21452, April, 1999. Available online at http://www.research.
ibm.com/hyperspace/Papers/tr21452.ps.

Sun Microsystems. “Threads and Swing.” Available online at http://java.sun.com/docs/
books/tutorial/uiswing/overview/threads.html.

Useful web sites

AOP and related methodology
Adaptive programming/Demeter: http://www.ccs.neu.edu/home/lieber/demeter.html

Aspect-oriented programming: http://aosd.net

Composition filters: http://trese.cs.utwente.nl/composition_filters
Hyper/J: http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm

Intentional programming: http://intentsoft.com

Multi-dimensional separation of concerns: http://www.research.ibm.com/hyperspace
Subject-oriented programming: http://www.research.ibm.com/sop

Libraries and tools you need to complete examples in the book
JDK 1.4: http://java.sun.com/j2se
AspectJ 1.1: http://www.eclipse.org/aspectj
log4j 1.2: http://jakarta.apache.org/log4j
J2EE SDK 1.3: http://java.sun.com/j2ee

http://www.xp2003.org/xp2002/atti/Kircher-Jain-XPplusAOPBetterSoftware
http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect.html
http://
http://
http://www-106.ibm.com/developerworks/java/
http://www.xprogramming.com/xpmag/virtualMockObjects.htm
http://www.research
http://java.sun.com/docs/
http://www.ccs.neu.edu/home/lieber/demeter.html
http://aosd.net
http://trese.cs.utwente.nl/composition_filters
http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
http://intentsoft.com
http://www.research.ibm.com/hyperspace
http://www.research.ibm.com/sop
http://java.sun.com/j2se
http://www.eclipse.org/aspectj
http://jakarta.apache.org/log4j
http://java.sun.com/j2ee

458 RESOURCES
Doug Lea’s Concurrency library: http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/
concurrent/intro.html

Jess 6.1: http://herzberg.ca.sandia.gov/jess/
Ant: http://ant.apache.org

Other AOP implementations
AspectC++: http://www.aspectc.org

AspectWerkz: http://aspectwerkz.codehaus.org
DemeterJ: http://www.ccs.neu.edu/research/demeter/DemeterJava

Java Aspect Components (JAC): http://jac.aopsys.com

JBoss/AOP: http://www.jboss.org/developers/projects/jboss/aop
JMangler: http://javalab.iai.uni-bonn.de/research/jmangler

Nanning Aspects: http://nanning.sourceforge.net

Pythius: http://sourceforge.net/projects/pythius

IDE integration of AspectJ
Eclipse/AspectJ integration: http://www.eclipse.org/ajdt

Emacs/AspectJ integration: http://aspectj4emacs.sourceforge.net

JBuilder/AspectJ integration: http://aspectj4jbuildr.sourceforge.net
NetBeans/AspectJ integration: http://aspectj4netbean.sourceforge.net

AOP/AspectJ tools and packages
Aspect-oriented design pattern implementations: http://www.cs.ubc.ca/~jan/AODPs

Aspect Mining Tool: http://www.cs.ubc.ca/~jan/amt

Concern Manipulation Environment (CME): http://www.research.ibm.com/cme
Cricket Cage testing framework using AspectJ: http://cricketcage.sourceforge.net

Feature Exploration and Analysis Tool (FEAT): http://www.cs.ubc.ca/labs/spl/projects/feat

Miscellaneous sites
Extensible Access Control Markup Language (XACML): http://xml.coverpages.org/xacml.html
Jakarta Commons: http://jakarta.apache.org/commons

Java Rule Engine API (JSR 94): http://jcp.org/aboutJava/communityprocess/review/jsr094

Rule Markup Language (RuleML): http://www.dfki.uni-kl.de/ruleml
Security Assertion Markup Language (SAML): http://xml.coverpages.org/saml.html

Simple Rule Markup Language (SRML): http://xml.coverpages.org/srml.html

http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/
http://herzberg.ca.sandia.gov/jess/
http://ant.apache.org
http://www.aspectc.org
http://aspectwerkz.codehaus.org
http://www.ccs.neu.edu/research/demeter/DemeterJava
http://jac.aopsys.com
http://www.jboss.org/developers/projects/jboss/aop
http://javalab.iai.uni-bonn.de/research/jmangler
http://nanning.sourceforge.net
http://sourceforge.net/projects/pythius
http://www.eclipse.org/ajdt
http://aspectj4emacs.sourceforge.net
http://aspectj4jbuildr.sourceforge.net
http://aspectj4netbean.sourceforge.net
http://www.cs.ubc.ca/~jan/AODPs
http://www.cs.ubc.ca/~jan/amt
http://www.research.ibm.com/cme
http://cricketcage.sourceforge.net
http://www.cs.ubc.ca/labs/spl/projects/feat
http://xml.coverpages.org/xacml.html
http://jakarta.apache.org/commons
http://jcp.org/aboutJava/communityprocess/review/jsr094
http://www.dfki.uni-kl.de/ruleml
http://xml.coverpages.org/saml.html
http://xml.coverpages.org/srml.html

RESOURCES 459
Mailing lists
AspectJ user mailing list: https://dev.eclipse.org/mailman/listinfo/aspectj-users

AOSD user mailing list: http://aosd.net/mailman/listinfo/discuss

https://dev.eclipse.org/mailman/listinfo/aspectj-users
http://aosd.net/mailman/listinfo/discuss

index
Symbols

! operator 67
example of 30, 107, 133–134,

153, 160, 162, 187, 190,
304, 321

#error, C/C++ 97
#warning, C/C++ 97
&& operator 67

example of 93, 95, 162, 165,
171, 222–223, 279

misleading interpretation 98
* wildcard 67

use in type signature
pattern 159

+ wildcard 67
.. wildcard 67

usage in constructor
signature 70

usage in method signature 70
usage in type signature

pattern 159
@deprecation

policy enforcement, and 186
|| operator 67

combining pointcuts, exam-
ple of 199

example of 158, 186–187,
199, 223, 308

A

abstract aspects
code reuse 58
example of 57, 333, 402

restriction on declaration 57
reusability 298
Swing example 298
transaction management,

example of 370
weaving 57

abstract pointcuts 56–57
example of 125, 128, 171,

251, 253, 299, 304, 319,
333, 347, 370, 383, 388

providing blank
definition 280

use in logging 171
access control

factory pattern, and 188
plain Java, limitations of 187
using AspectJ 187

AccessControlContext
authorization, use of 338

AccessControlException
authorization, use of 338

AccessController
authorization, use of 338

AccessController.check-
Permission() 339

authorization, use of 338
AccountJDBCImpl 358
ACID properties

transaction 357
acquire()

concurrency utility
library 317

advice 81
anatomy of 82
aspect instance, accessing

inside 124

body 83
categories 81
comparison with method 86–

87
declaration 82

context information,
and 82

exception declaration,
and 83

declaring exception thrown,
example of 377

definition of 35
exposed join point,

restriction 82
inclusion in aspects 56
join point in aspect 277
methods, comparison 86
ordering 114

lexical 119
precedence, and 111
single aspect 119

example of 349
unpredictability 115

passing context to 87
precedence 111

authorization, example
of 349

sequence diagram 81
use with pointcut 35

advice execution join points 50
pointcut syntax 74

adviceexecution pointcut 74
after advice 83

example of 53
exceptional return, on 84
successful return, on 84
461

462 INDEX
variation 83
after returning advice 84

context collection, example
of 232

efficiency consideration 98
example of 93, 220

after throwing advice 84
capturing exception, exam-

ple of 269
context collection, example

of 269, 377
use in exception logging 164

ajbrowser 60
crosscutting view 60
relation to IDE

integration 60
ajc

-1.4 flag, use of 291
-aspectpath option 444
-classpath option 440
compiling source directories

See -sourceroots option,
ajc 441

compiling source files 441
creating aspect libraries

See -outjar option, ajc 443
creating JAR files

See -outjars option, ajc 442
-d option 440
-deprecation option 440
existing build system, incor-

porating into 443
-g option 440
incremental compilation

mode
See -incremental option,

ajc 444
-injars option

See -injars option, ajc 442
javac, difference from 441
-outjars option

See -outjars option, ajc 442
preventing weaving 444
providing useful warnings

See -Xlint option, ajc 446
-source option 440

example of 233
-sourceroots option

See -sourceroots option,
ajc 441

-target option 440

using aspect libraries
See -aspectpath option,

ajc 444
weaving into JAR file

See -injars option, ajc 442
weaving, once-only

restriction 443
-Xlint option

See -Xlint option, ajc 446
-XnoWeave option 444

ajc ant task
defining in build file 449
iajc ant task, relation 449

ajc compiler
iajc ant task, and 448

amount of code
authorization example,

conventional 345
anonymous pointcut 65

using in a pointcut 66
using in an advice 66

Ant
AspectJ compilation task

See iajc ant task 448
AspectJ, using with 448
build file 448
build system

policy enforcement 180
overview 448
projects 448
targets 448
tasks 448

ant command
default settings 449
specifying properties 451

anti-idiom
infinite recursion 277

AOP
anatomy of language 22
benefits 27

code reuse 28
reduced cost 29
time-to-market 29

comparison with EJB 14, 31
definition of 4
development process

See AOP development
process 21

difference from OOP 20
effect on modularization 28
effect on system evolution 28

history of 20
implementation of 20
in enterprise applications 31
inventors 20
learning curve 27, 31
mailing list, general

discussion 436
methodology 21
myths 29

fixing bad design 4, 29
patching 30
silver bullet 437

object encapsulation 30
obliviousness 20
OOP as the base 6
program flow 29
purpose 4
related methodologies 20
relation to AspectJ 20
relation to design pattern 30
relation to OOP 19, 30
relation to XP 28
separation of concerns 20
separation of

responsibility 28
short overview 4

AOP development process
aspects 21
aspectual decomposition 21
decomposing

requirements 21
implementing core

concerns 21
light-beam/prism analogy 22

AOP language
base programming

language 23
implementation of

concerns 23
specification 23
weaving rules

specification 23
API, reflection

See reflection API 101
application frameworks

policy enforcement, and 181
architect’s dilemma 5, 28

AOP, and 5–6
logging example 167
opposing forces 5
performance example 5, 241

INDEX 463
resource pooling, and 207
thread pooling, example

of 315
args pointcut 80

context collection 87
example of 233, 402, 408

example of 80, 214, 220
reflection, and 101
type limiting, example of 234

around advice 85
accommodating different

return types 91–92, 253,
254

altering context 40
bypassing join point, example

of 209, 371, 373
casting, example of 254
detecting failure, use in 369
example of 40, 82, 85, 214
exception declaration 91–92
failure handling example 90
primitive return value 90
proceed(), and 85
returning Object, example

of 253, 370
returning value 89

example of 228, 238
throwing exception, example

of 214, 238
transaction management,

example of 370
try/catch block 267
unwrapping, example of 254
usage of 85
using proceed() 40
worker object creation pat-

tern, and 249
wrapping and unwrapping

of 90
aspect libraries 321

creating
iajc ant task 452
See outjar option, ajc 443

using
iajc ant task 453
See -aspectpath option,

ajc 444
aspect weaver 4

See weaving 4, 24
AspectJ

adoption 176, 426

policy enforcement,
and 179

See AspectJ adoption
applying to new

problems 426
browser

See ajbrowser 60
compiler 59

byte-code conformance 59
difference from Java

compiler 98
Eclipse, relation to 440
Java byte-code specifica-

tion, and 440
Java compiler

common compiler
options 440

similarity to 439
overview 59, 440
See ajc 440
weaving 59

compiling sources 38
criteria for using 426
crosscutting classification 33
design patterns

exception introduction pat-
tern

See exception introduction
pattern 260–269

participant pattern
See participant

pattern 270–277
worker object creation pat-

tern
See worker object creation

pattern 247–
256

wormhole pattern
See wormhole

pattern 256–260
design phase 428
development phases, use

of 427
development process 427

limiting impact 427
restricting

implementation 427
using conventional

solution 427
downloading 439

dynamic crosscutting
See dynamic

crosscutting 34
evangelizing 434
exposed join point 43
implementation phase 428
incorrect usage 433
individual productivity,

for 434
installation

JAR files 439
installing 439
internal details vs. language

semantics 42
internals 40
Java, superset of 440
join point model 43
just-in-time weaving 60
legacy project, and 432
mailing list 436
maintenance phase 432
mapping of elements 41
overview 33
relation to Java 33
running programs 38
setting up 439
simple program 37
static crosscutting

See static crosscutting 34
testing phase 431
word of warning 433
XP, and 431

AspectJ-based authentication
enabling access check 339
just-in-time 333

AspectJ-based business rule
implementation 394

concern weaving 395
isolation layer 411
obliviousness 411
participating entities 394
participating join points 395
template 394

AspectJ-based caching 237–241
AspectJ-based logging 156

graphical illustration 157
investment 176
overview 146–154
risk 176

AspectJ-based rule engine
graphical illustration

464 INDEX
behavioral 416
collaboration 415

AspectJ-based rule implementa-
tion

aspect, banking example 421
join point collection, when

using rule engine 420
join point, restricting 420

AspectJ-based transaction
management 368–378

defining operation 369
JTA, using 388
requirements, high-level 368

aspectjrt.jar
AspectJ runtime library 439
-classpath option, and 441
iajc ant task 448

specifying without modify-
ing CLASSPATH 451

java ant task
specifying without modify-

ing CLASSPATH 451
aspectjtools.jar

AspectJ tools library 439
iajc ant task 448

specifying without modify-
ing CLASSPATH 450

aspectOf() 136
control-flow-based associa-

tion, and 136
aspect-oriented logging 153,

156
advantages of 156
dependency reversal 156
weaving 156

aspect-oriented programming
See AOP 4

aspect-oriented resource pooling
plug-and-play 208
requirements 208
template aspect

See resource pooling tem-
plate aspect 208

aspect-oriented thread
pooling 226

-aspectpath option, ajc 444
-injars option,

combining 444
aspects

abstract
See abstract aspects

access control rule, and 139
access specification 56
association 122–136

categories 122
default association

See default
association 123

implicit limiting of join
points, and 132

per-control-flow association
See per-control-flow

association 128
scope 132
state 122
syntax 122

comparison with classes 56
consistent naming

conventions 430
constructor 56
defining subaspect

See subaspect 57
definition of 36
dissimilarity with classes 58
domination

See aspect precedence 116
extending classes 58
extending restrictions 59
general form 55
implementing interfaces 58
inclusion of data members 56
inclusion of methods 56
inheritance

example of 335
precedence and 117

instance, accessing 124
instances

accessing 135
participant pattern,

and 380
percflow association

example of 372
transaction management

example 372
stateless aspects, and 382
transaction context, as 369

instantiation
capturing join point 375
default association 58
restriction 58

introducing default
implementation 283

logging, using for
See logging 146

maintaining state 122
mapping to Java class 41
multiple aspects 111
nested

See nested aspects 56
nested inside a class, example

of 361
parent types 56–57
per-object association

See per-object
association 125

precedence 111–122, 433
avoiding coupling 116
consistent naming

convention 430
explicit 115
indeterminism 113
inheritance, and 117
logging, and 172
member introduction 120
Swing thread safety

example 302
usage style 116

privileged 139
See also privileged

aspect 59
state, maintaining 122
with data member, example

of 333
with method, example of

334
with nested classes, example

of 334
aspectual interface

participant pattern 274
aspectual recomposition 21
aspectual refactoring 426, 431

conventional refactoring,
comparison with 431

normal usage, differences
using 431

assert 230
contract enforcement 230
-ea option 233
Jess, statement 419

asynchronous routing
exception introduction

pattern 311
exception listener 311

INDEX 465
exception-handling
policy 311

atomicity
transaction, and 357

auditing 324
using logging 184

authentication 324
AspectJ-based 333–336
authorization

prerequisite 337
avoiding multiple login 334
callback handler 329
concern-specific exception,

use of 335
concrete aspect, example

of 335
conventional solution 329–333
definition of 324
developing subaspect 333
just-in-time

See just-in-time authentica-
tion

login scope 334
property-based pointcut 270
servlet session, as scope 334
up-front login 354

authentication and authoriza-
tion

banking example 325–329
separating join points 354

fall back 354
authorization 324

AspectJ-based 346–352
authentication, as

prerequisite 337
concrete aspect 349
conventional solution 336–

345
data-driven 352
definition of 324
enabling in a system 349
multiple subaspects

subject management 353
use of 353

policy file, example of 343
routing of calls 348
subsystem control 353
wormhole pattern, and 256

authorization aspect
dealing with checked

exceptions 351

auto-commit mode 365–366
transaction management,

JDBC and 359
auxiliary characteristics

participant pattern 270
AWT

EJB programming restric-
tions, and 191, 193

AWT thread
See event-dispatching

thread 288

B

backward-reasoning algorithm
rule engine 412

banking system
authentication and

authorization 325
business rule, example of 396
check clearance system, sig-

nificance of business
rule 403

core business logic
implementation 396–
401

minimum balance rule 401
overdraft protection rule 403
overdrafts accounts 398
persistence

class diagram 358
transaction management

subaspect 374
with rule engine 417–423

BasicPermission 338
before advice 83

example of 39, 53, 82, 220
exception throwing and join

point execution 83
throwing exception, example

of 403
usage of 83

before-and-after
illustrating AspectJ’s

power 434
best practices

business rules 420
declare warning, use of 190
policy enforcement, and 189
public members 190

beta testing 432

binary operator 67
type signature 69

bind
Jess, statement 419

blank final variable 296
Blaze Advisor

rule engine 417
blocking the caller,

undesirability 298
build configuration 430

correctness consideration 431
deployment

consideration 430
development process 427
policy enforcement 184

business rules
airlines booking system,

example of 395
aspect

template 395
AspectJ-based

mechanisms 394–396
banking system, example

of 396
business objects, as facts 412
changing nature 392
context collection, need

for 395
current mechanisms 393–

394
definition of 392
enterprise applications,

and 392–393
enterprise system, need

in 392
evaluating

code tangling 392
example of 392
expression 393
implementation

choices 393
overview 393
steps 412

JSR 94, and 393
modularizing using

AspectJ 415–417
need for separation 392
rule engine 412
shopping cart, example

of 392
using rule engine 411

466 INDEX
business-specific checked excep-
tions

dealing with catching 267
business-specific exceptions

dealing with 261
bypassing execution

around advice, use of 373

C

C++ 183
friend, access

specification 188
C/C++ preprocessors 97
caching 235–241

AspectJ-based 235–241
deployment aspect, as 242
development aspect, as 242
feature change, caching

example of 240
growth management 241
LinkedHashMap 241
performance, finding

bottlenecks 242
per-object association 125
resource pooling, difference

from 235
SoftReference, example

of 241
stylesheet 235
using aspect 92
validity consideration 240
XSLT 235

call depth
extra argument, using 367
use in logging 170
use in profiling 175

call stack
wormhole pattern 258

call pointcut 74
example of 214, 220, 291,

299, 301, 304
specifying method exception,

example of 269
callback handler

LoginContext, and 330
caller context

current solution 257
passing additional

parameters 257
thread-specific storage 257

wormhole pattern 257
cflow pointcut 75, 383

comparison with cflowbelow
pointcut 76

depiction using sequence
diagram 76

example of 75, 306
transaction management,

example of 371
use in policy

enforcement 192
use in tracing aspects 159
wormhole pattern, use in 404

cflowbelow pointcut 75
comparison with cflow

pointcut 76
depiction using sequence

diagram 76
example of 75, 93
top-level operation, capturing

using 370
usage of 77
use in tracing aspects 159

characteristics-based crosscutting
embedding pointcut in

class 272
enumerating join points 272
participant pattern, and 270

checked exception 136, 260
advice, restriction on 260–

261, 264
compiler errors 263
current method 264
dealing with, example of 262
exception introduction

pattern 260
restriction, and overridden

methods 261
underlying logic, dealing

with 261
class initialization join point 48

comparison with object
initialization 49

pointcut syntax 74
static blocks 49

CLASSPATH
modification for AspectJ 439

-classpath ajc option 440
code review

EJB programming
restrictions 192

policy enforcement,
using 182

code scattering 15–16, 426
business rules, example

of 394
cause 16
classification of 16
complementary code

blocks 17
default interface

implementation 282
duplicated code blocks 16
illustration 17
JTA, and 388
policy enforcement 182
puzzle piece analogy 17
resource pooling 206
sign of crosscutting

concern 429
transaction management 368

code tangling 15, 426
business rules 392

example of 394
cause 15
code example 16
crosscutting concern, sign

of 429
illustration 16
logging 155
policy enforcement 182
resource pooling 206
transaction management 368

collaboration flow
participant pattern 276

commit
database connection 366

common characteristics
sharing of 270
slow operations, example

of 270
communicating failure

transaction management 369
compiler warnings

See -Xlint option, ajc 446
compile-time errors

advice checked exception,
and 264

compile-time declarations
definition of 36
inclusion in aspects 56

INDEX 467
compile-time enforcement 180
example of 180
limitations 183

compiling
source directories

See -sourceroots option,
ajc 441

source files 441
concerns

banking example 7
composition of 8
core

See core concerns 4
crosscutting

See crosscutting concern 4
definition of 7
identification 8
implementation 21
process concerns 7
role in software system 7
separation

See separation of
concerns 8

tangling 7
concern-specific checked

exceptions 260
concern-specific exception

authentication, use in 335
concern-specific runtime excep-

tion
generic runtime exception,

vs. 266
concrete aspect

authorization example 349
concrete subaspect

participant pattern 274
concurrency utility library 316
conditional check pointcut 80
configuration file

authorization, role in 338
example of 330
java.security.auth.login.con-

fig, specifying using 332
connection object

transaction context, as 368
consistency

transaction, and 357
consistent logging

importance of 155
consistent naming

convention 98

importance of 429
example of 199

constructor join point 46
call 46
execution 46
execution vs. call 47
pointcut syntax 74

constructor signature 70
example of 72
similarity with method

signature 71
use of .. wildcard 70

context 87
context collection

after returning advice 84
example of 220

after throwing advice 84–85
business rules, need in 395
caching, example of 92
collecting field set value 80
collecting return value 84,

89
collection exception

object 80, 84–85, 89
example of 40
transaction management,

example of 384
using anonymous

pointcut 87–88
using args pointcut 80, 87
using named pointcut 88
using target pointcut 78,

87
using this pointcut 78, 87

control-flow
concepts 75
conceptual object 128
thread of execution, and 128
transaction

management 368–369
control-flow association

transaction management,
example of 370

control-flow-based pointcut 75
example of 75

conventional authorization
issues 345

conventional logging 149
consistency 155
graphical illustration 155
invasiveness 155

issues 154
shortcomings 154

conventional profiling 175
conventional resource pooling

code snippet 212
conventional transaction man-

agement
committing at the top

level 367
disadvantages of 368
passing the connection

around 365
using thread-specific

storage 367
convincing

management 435
organization 434
team 436

core business logic
banking system, example

of 396
definition of 392
modular nature 392
stable nature 392

core concern 4
capturing functionality 7
consistent naming

convention 429
design phase 428
implementation of 30
implementation phase 429
refactored code, importance

of 429
relativity 21

coupling
database connection pooling,

and 211
credentials

authorization, checking
for 336

crosscutting
high-level example 37
implementing using

AspectJ 36–37
viewing in ajbrowser 60
viewing in an IDE 61

crosscutting concern
business rules, example

of 393
capturing functionality 7
client-side modularization 11

468 INDEX
definition of 4
design phase 428
design/implementation

mismatch 15
enterprise example 7
implementation 430

designing aspects 430
join point

identification 430
underlying technology,

choosing 430
logging 154
modularization using

AOP 12
modularization using

OOP 11
need for additional

methods 15
OOP shortcomings 4
pseudo code example 14
recognizing 428
rule of thumb 428
server-side

modularization 11
tangling of data members

15
tangling of multiple

concerns 15
transaction management,

example of 357
weaving 13

cryptography 324

D

-d
ajc option 440

data introduction
example of 121
See member introduction 95

database connection
identifying 216
resource pooling, and 204

database connection pool
capacity 217
implementation of 216
SimpleDBConnectionPool 21

7
timeout 217

database connection pooling
aspect 211–223

changing pool
implementation 215

fine tuning 222
registering connection, need

for 213
resource creation join

point 214
resource destruction join

point 214
resource pooling template,

mapping to 213
selective enabling 222

DatabaseHelper 358
data-driven authorization 352

EJB, and 325
DBConnectionDescription 216
DBConnectionPool 212
DBConnectionPoolingAspect 2

14
deadlocks 287
declarative form, EJB

transaction management 357
declare error 97

policy enforcement
example of 186–187, 192,

195
transaction management

example 374
declare parents 96

example of 97
Java inheritance rules 97
restrictions 97

declare precedence 115
abstract aspects 115, 119
circular dependency 117

enforcement usage 117
common usage idiom 117
dominating all aspects 116
example of 115, 269
example of multiple

types 116
logging, example of 220,

332, 363, 408
subordinating all aspects 116
Swing thread safety, example

of 302
syntax 115
use in logging 328
wildcard, using 116

declare soft
example of 319, 371

exception introduction pat-
tern, vs. 335

SQLException, example of
361

syntax 137
declare warning 97

best practices, use in 190
example of 180
policy enforcement

example of 186
transaction management

example 374
decorator design pattern 246
default association

instance creation
transaction management

example 382
default interface

implementation 281–285
overriding 284
partial 284
multiple inheritance 284
providing, idiom 281

DefaultTableModel 196
DelegatingThread 226

implementation of 227
need for 226

delegation pattern 282
deployment

policy enforcement 185
-deprecation

ajc option 440
design

bloat 6
limitations of techniques 6
realization in hindsight 5

design pattern
definition of 246
idiom, difference 246
language specificity, and 246
object-oriented

decorator 246
factory 246
visitor 246

problem scope, and 246
relationship with AOP 30
use in design phase 430

design phase
AspectJ, using 428
core concern

implementation 428

INDEX 469
crosscutting concern 428
defining roles 428

detecting caller type
call stack, using 406
conventional methods,

using 405
wormhole pattern, using 405

development phase
policy enforcement 184

developmental aspect
policy enforcement 179, 184

distributed system
tracing 157

distributed transaction
management 387

doAsPrivileged()
authorization, use of 338

documentation
policy enforcement,

using 181
domination

See aspect precedence 116
durability

transaction, and 357
dynamic context 101

pointcut vs. reflection 101
dynamic crosscutting 34, 81

definition of 34
runtime policy enforcement,

and 184
See also advice 81
static crosscutting, compari-

son with 95
use of pointcut 35

dynamic information
logging 107

dynamic monitoring 176
dynamic profiling 432
dynamic proxies

using 13–14
dynamic service-level

monitoring 176

E

echo server
EchoServer class 224
thread pooling, example

of 224
worker class 224

Eclipse
AspectJ compiler, relation

to 440
AspectJ integration 61

EJB
2.0 specification 191
authorization, and 325
policy enforcement 191–195
programming

restrictions 191
AWT, and 191, 193
native library loading 194
socket creation 194
static fields 194
System.in access 194
threading 191

transactions, and 357
EJB-lite framework 355
Emacs JDEE

AspectJ integration 61, 440
empty pointcut definition

idiom 280–281
enclosing context 102
Enterprise Resource Planning

(ERP) 387
EnterpriseBean 192
ERP 387
error recovery aspect

exception handling, and 261
evangelizing AspectJ 434
event-based programming

comparison with weaving 24
event-dispatching thread 287

improving UI responsive-
ness, exclusion 315

requesting operation 289
Swing 195
Swing policies 198

EventQueue.invokeAndWait()
198, 289

blocking caller 295
InterruptedException 300
InvocationTargetException

300
Swing thread safety, example

of 293
synchronous operations,

example of 295
worker object creation pat-

tern, and 253

EventQueue.invokeLater() 198,
289

asynchronous operations,
example of 295

exception, and 311
Swing thread safety, example

of 293
worker object, and 247

EventQueue.isDispatchThread()
199, 300

exception handler join point 48
pointcut syntax 74

exception introduction
pattern 260–269

chained exception 265
checked exception 260

wrapping of 265
current solution 261
declare soft, vs. 267, 335
distinguishing concern spe-

cific exception 267
exception call stack

understandability 266
generic aspects 267
getCause() 269
initCause() 265
need to capture all exception

types, example of 372
pattern template 265
preserving exception

type 265
preserving exception

specification 268
propagating concern-specific

exception 265
propagating exception 265
read-write lock pattern, use

of 320
runtime exception, use

of 265
SoftException 267

propagating business-spe-
cific exception 267

summarily captured excep-
tion, dealing with 268

Swing thread safety, example
of 312

transaction management,
example of 377

unchecked exception,
issue 265

470 INDEX
exception-handling policy
grouping of calls 296

exception-handling strategy
change management, ease

of 312
exceptions

handling
combining operation, diffi-

culty with 342
current solution 261

logging 163
using log4j 166
using the standard Java

toolkit 165
using System.err 164

softening 136–139
caution 139
effective code 138–139
execution vs. call

pointcut 138
under the hood 138
usage of 137

summarily capturing, exam-
ple of 370

execution object pointcut 78
example of 78

execution pointcut 74
capturing constructor, exam-

ple of 168, 385
capturing read operations,

example of 321
example of 159, 232, 306

existing build system
incorporating AspectJ 443

explicit aspect precedence 115
exposed join point

advice, on 82
Extensible Access Control

Markup Language
(XACML) 324

Extreme Programming
See XP 431

F

factory pattern 187, 246
field access join point 47

pointcut syntax 74
read access 47
write access 47

field read join point
pointcut syntax 74

field signature 72
example of 72
use of type signature 72

field write join point
pointcut syntax 74

field-get join point
getArgs(), and 104

field-set join point
getArgs(), and 104

final, and local classes 295
flexible access control

factory pattern, and 188
friend (C++) in Java 188
policy enforcement 187
shopping cart example 187
use of 187

Forte
AspectJ integration 61

friend (C++) 188

G

-g
ajc option 440

get pointcut 74
example of 186

getArgs() 104
example of 107, 168
field-get join point 104
field-set join point 104
handler execution join

point 104
primitive argument 104

getCause() 269
getConnection() 212
getDeclaringType()

example of 376
getKind() 105

example of 108
getResource() 205
getSignature() 105

example of 108, 199, 291,
328, 332

logging, example of 363, 408
use in logging 158, 168

getSourceLocation() 105
example of 108, 199

getStaticPart() 102, 104–105

getTarget() 104
example of 107
returning null 104, 108
static methods 104, 108

getThis() 104
example of 107, 168
returning null 104, 108
static methods 104, 108

getThread() method 226
GUI applications

See UI applications 313
GUI refreshing

responsiveness, and 314

H

handler execution join point
getArgs(), and 104

hasAspect() 136
hotspot

log() method interaction 150
HTML 236

I

iajc ant task
ajc compiler, and 448
ajc ant task, relation 449
aspectjrt.jar 448

specifying without modify-
ing CLASSPATH 451

aspectjtools.jar 448
specifying without modify-

ing CLASSPATH 450
aspectpath nested

element 453
compiling source files 448
creating aspect libraries 452
defining in build file 448
destdir attribute 449
incremental attribute 454
incremental compilation 453
injars nested element 452–

453
javac ant task, similarity 448
outjar attribute 452
sourceroots nested

element 449, 452–453
utilizing aspect libraries 453
weaving into JAR files 451
XnoWeave attribute 452

INDEX 471
IDE
crosscutting view 61, 434
integration 61
multiple aspect, viewing 433

idioms 277–285
definition of 246
design pattern,

difference 246
programming tips 277

if pointcut 80
example of 80, 199, 223, 299
nullifying advice, idiom 279
removal of advice,

warning 279
ILOG JRules

rule engine 417
implementation phase

AspectJ, using 428
common practices 428
core concern 429

implementation space
one-dimensional 10

implicit limiting of join points
refactor, warning 133

improving UI
responsiveness 313, 314

incremental adoption
policy enforcement, and 179

incremental compilation
iajc ant task 453

incremental compilation mode
See -incremental option,

ajc 444
-incremental option, ajc 445

sourceroots, need for 446
indentation

concrete aspect 171
example of 107
reusable aspect 171
use in profiling 175

indented logging
IndentedLogging base

aspect 171
subaspect, example of 328,

363, 375, 408
individual productivity

improving, using AspectJ 434
infinite recursion

avoiding 277–278
avoiding, idiom 277
avoiding using !within() 108

initCause() 265
initialization pointcut 74

example of 107
-injars option, ajc 442

-aspectpath option,
combining 444

-sourceroots and -outjar
options, combining 442

-sourceroots option,
combining 442

inner class
blank final variable,

restriction 296
installing AspectJ 439
instance variable

multiple subaspects, authori-
zation example 353

interadvice precedence 119
authorization, example of 349

InterruptedException 300
introducing compile-time errors

and warnings 97
example of 98
restrictions on 97
statically determinable

pointcuts 97
usage of 97

introductions
definition of 35
inclusion in aspects 56
providing default implemen-

tation, use in 281
See member introduction 95

invasiveness
transaction management,

example of 366
inviting aspect

participant pattern 274
InvocationTargetException 300
invokeAndWait() 196
invokeLater() 196
isolation

transaction, and 357

J

J2EE
transaction management,

and 357
JAAS 261, 324

authorization, using 337

callback handler 329
J2SE 1.4 324
login configuration file 329

JAAS-based authorization 337
Jakarta Commons Logging

toolkit 173
JAR files

creating
See -outjars option, ajc 442

jar ant task 452
Java Authentication and Autho-

rization Service
See JAAS 324

Java byte-code specification
AspectJ compiler, and 440

Java Expert System Shell (Jess)
See Jess 417

Java Language
Specification 296

java ant task
aspectjrt.jar

specifying without modify-
ing CLASSPATH 451

classpath nested element 449
running AspectJ

programs 449
Java Transaction API

See JTA 357
java.awt.EventQueue 196
java.security.auth.login.config

configuration file,
specifying 332

java.security.policy
policy file, specifying 344

java.sql.Connection 213
java.sql.DriverManager 219
java.sql.ResultSet 219
java.sql.ResultSetMetaData 219
java.sql.Statement 219
javac

ajc, difference from 441
javac ant task

compiling pure Java
sources 452

iajc ant task, similarity 448
JavaDoc 186
javax.jms.Session 246
javax.swing.SwingUtilities 196
javax.swing.text.Document 199
JBuilder

AspectJ integration 61

472 INDEX
JComponent 199
JDBC 211, 261, 358
JDBC 1.0 211
JDBC 2.0

aspect-oriented resource
pooling, interaction 215

database connection
pooling 215

resource pooling 211
Jess

assert statement 419
bind statement 419
defining facts, banking

example 418
defining rules, banking

example 419
derived facts, banking

example 419
interaction with Java

objects 418
knowledge base, storing

into 418
Rete algorithm, implementa-

tion of 417
rule engine 417
rule expression

LISP-like 417
rule invocation 420

JessException
Jess, unwrapping of 423

JIT compiler
log() method interaction 150

JMS 203, 387
queue 387

join point model 43
join points 43

accessing information 101
advice execution

See advice execution join
points 50

associated context 43
capturing aspect

instantiation 375
capturing using kinded

pointcut 74
categories 44
class initialization

See class initialization join
point 48

concepts 43
constructor

See constructor join
point 46

definition of 34
demonstration example 50
difference from pointcut 35
enclosing context 102
exception handler execution

See exception handler exe-
cution join point 48

exposed 43
field access

See field access join
point 47

kind 102
method

See method join point 45
multiple advice 114
object initialization

See object initialization join
points 49

object pre-initialization
See object pre-initialization

join points 49
programmatic access 101
sequence diagram

illustration 43
source location 102
structural context 102

JoinPoint 102
getArgs()

See getArgs() 104
getKind()

See getKind() 105
getSignature()

See getSignature() 105
getSourceLocation()

See getSourceLocation() 105
getStaticPart() method

See getStaticPart() 104
getTarget()

See getTarget() 104
getThis()

See getThis() 104
toLongString() 105
toShortString() 105
toString() 105
use in logging 168

JoinPoint.StaticPart 102
authorization, use in 347
method parameters type,

as 347

JoinPointTraceAspect
example of 106

JOptionPane.showMessage-
Dialog()

asynchronous routing,
issue 307

JRE 1.4 330
JSR 166

concurrency utility library,
and 316

JSR 175
participant pattern, and 271

JSR 94 418
business rules 393

JTA 357, 387
AspectJ-based solution 387–

389
code scattering 388
conventional

implementation 388
modularizing using

AspectJ 388
policy-enforcement, and 389
transaction management 357

JTable 196
just-in-time authentication

AspectJ-based 333
conventional 331
up-front login,

difference 329

K

kinded join point
getKind(), using 105

kinded pointcut 73
definition of 73
example of 73–74
syntax 74

knowledge base
Jess, and 418
rule engine 412

L

legacy project
AspectJ, using 432

legacy system
policy enforcement, use of 373
transaction management

handling of issues 373

INDEX 473
lexical arrangement
advice precedence, example

of 349
lexical scope

concept 77
lexical-structure based

pointcut 77
example of 77

limiting join points
Swing thread safety, example

of 312
LinkedHashMap

caching example 241
listener management

swing thread-safety, and 288
local class and final

variable 295
log analyzer 175
log()

deducing the caller 150
explicit invocation 154
hotspot, and 150
inefficiency 150
JIT compiler, and 150
logp(), difference from 150
use in log4j 162

log4j 146
policy enforcement, and 185

log4j.properties 162
logging 146, 156

aspect precedence and 172
aspect-oriented 153
authentication and authoriza-

tion example 328
authorization example 342
business rule, example of 408
caching, example of 236, 239
centralized control 156
change management using

aspects 159
changing underlying

mechanism 173
consistency 155
conventional 149
debugging, and 146, 433
example of 332
indentation 107, 170
instrumentation 150–151
level 150
method parameters 168
modularization 156

multithreaded
environment 173

precedence between multiple
logging aspects 173

resource pooling, example
of 219

Swing thread safety, example
of 291, 301, 306

thread pooling, example
of 232

transaction management
example 363, 375

using AOP 12
using for testing 174
using OOP 11

logging idioms 167–174
logging toolkit

advantages 149
aspect-oriented logging, role

of 156
change of 155
inadequacy 150
log4j 146
standard Java 146

login
example use of 331

login configuration file 329
login scope 334
LoginContext 329

example of 331
initialization 330

logp()
log()

comparison with 160
difference from 150
vs., enforcing policies 179

logging exception 165
logging method

parameters 170

M

maintenance phase
AspectJ, using 432
creating protection walls 432
policy enforcement 184

makefile
policy enforcement 180

matching field type 80
matching handler type 80

matching subclass join
points 79

member introduction 95
aspect precedence 120
example of 95, 121
interfaces, into 96
per-object association, rela-

tion with 125, 134
reusable aspect 135

mentoring
policy enforcement, using 184

MessageFormat class 170
metadata

JSR 175, and 271
participant pattern, and 271

method call tracing 157
improving performance 160
limiting scope 159
log-level pre-check 160

method introduction
business rules, example

of 421
example of 121, 402
overriding base aspect intro-

duction, example of 403
use of introduced method,

example of 403
method join point 45

call 45
execution 45
execution vs. call 46
pointcut syntax 74

method parameters
logging 168

method signature 70
examples of 70
matching of modifiers 70
similarity with constructor

signature 71
use of .. wildcard 70
use of type signature 70

method tracing
shopping cart example 158
using log4j 162
using System.out 158
using the standard

toolkit 160
modifying class hierarchy

usage of 96
modularization

authorization example 11

474 INDEX
crosscutting concerns using
OOP 11

logging example 11
need for 11
using AOP 12
using EJB 12–13
using OOP 11

multiple aspects
example of 111
interaction of 433
undesirable behavior 113

N

named pointcut 65
context collection, example

of 228, 237
general form 65
using in an advice 66

native library loading
EJB programming

restrictions 194
negation operator 67
nested aspects 58

access specification 56
example of 188, 283
participant pattern, and 273–

274
policy enforcement, and 185,

189
nested class

inside aspect, example of 371
nested subaspects

example of 379
participant pattern, and 273

nested transactions 361
database commit 362
participant pattern, and 380
top-level methods 367

NetBeans
AspectJ integration 61, 440

network failures
handling using aspect 90
simulation of 91

networking
EJB programming

restrictions 194
NoAspectBoundException 136
nonmodularization

issues with 18–19
symptom of 15

nonrecursive calls
capturing 94

nullifying advice 279–280
alternatives 280
idiom 279
resource pooling

example 223

O

object initialization join
points 49

comparison with class
initialization 49

pointcut syntax 74
object pre-initialization join

points 49
pointcut syntax 74

object-oriented patterns
delegation pattern 282

object-oriented programming
AOP, relation to 11
strengths 7
weaknesses 7

operator
! 67
&& 67
|| 67
binary 67
precedence 68

use of parentheses 68
unary 67
use in pointcuts 67

optimization
using aspect 92

opt-in
participant pattern 274

org.aspectj.lang 104
org.aspectj.lang.JoinPoint

See JoinPoint 102
org.aspectj.lang.JoinPoint.Static

Part 105
See JoinPoint.StaticPart 102

org.aspectj.lang.reflect 104
org.aspectj.lang.SoftException

138
-outjar option, ajc 442–443

-sourceroots and -injar
option, combining 442

P

participant pattern 270–277
aspect instances, and 380
aspectual interface 274
collaboration flow 276
explicit participation 276
inviting aspect 274
overview 273
participant subaspect, exam-

ple of 379
peripheral

characteristics 270
read-write lock pattern,

and 321
reversal of roles 273
template 274
transaction management

example of 379
use case 378
use of 369

UML class diagram 276
use case 378
warning 271

PATH
modification for AspectJ 439

pattern
thread-safety 287

percflow association 129
aspect instance, example

of 372
aspectOf(), and 136
example of 131
transaction management,

example of 370
percflowbelow association 129

aspectOf(), and 136
per-control-flow

association 128
alternatives 129
for transaction

management 128
reusable aspect 128

performance
architect’s dilemma 241
resource pooling, improving

using 203
performance testing 432
performance-monitoring

aspect 432

INDEX 475
peripheral characteristics
JSR 177 271
participant pattern 270

per-object aspect
association 125

aspect state 125
association lifetime 126
member introduction, rela-

tion with 125, 134
read-write lock pattern, exam-

ple of 319
reusable aspects 125
sequence diagram 127
static-crosscutting, relation

with 125, 134
usage of 125

personal productivity
improving use policy

enforcement 200
pertarget association 126

example of 128
perthis association 125–126

example of 126, 319
read-write lock pattern, exam-

ple of 319
persistence

banking system 358–364
plug-and-play

EJB programming
restrictions 191

logging 177
profiling 175
resource pooling 203, 208

pointcut designator 65
pointcuts 65

abstract
See abstract pointcuts

access specification 56, 65
adviceexecution pointcut 74
anonymous and named 65
args pointcut

See args pointcut 80
argument 80
call pointcut 74
capturing based on return

type
example of 304

capturing no join point 67
cflow pointcut

See cflow pointcut 75

cflowbelow pointcut
See cflowbelow pointcut 75

class initialization 74
conditional check 80
constructor call 74
constructor execution 74
context collection, example

of 402
control-flow based 75
declaration 56
definition of 35
difference from join point 35
example of 39–40
exception handler 74
execution object 78
execution pointcut 74
field read access 74
field write access 74
get pointcut 74
handler pointcut 74
if pointcut

See if pointcut 80
initialization pointcut 74
kinded

See kinded pointcut 73
lexical-structure based 77
method call 74
method execution 74
named

See named pointcut 65
object initialization 74
object pre-initialization 74
operators 67
preinitialization pointcut 74
property-based 68
signature syntax 68
staticinitialization

pointcut 74
target pointcut

See target pointcut 78
this pointcut

See this pointcut 78
use in advice 83
use in static crosscutting 74
use with advice 35
using from another aspect

example of 301
wildcards 67
within pointcut

See within pointcut 77

withincode pointcut
See withincode pointcut 77

policy enforcement 179–201
application frameworks,

and 181
call pattern detection 185
compile-time

See compile-time
enforcement 183

conventional, problems
with 182

core program behavior 184
current solution 181
definition of 179
deployment

consideration 184
detection tools, using 181
development phase 184
developmental aspect 179
documentation, as 181
documenting restrictions 181
EJB programming

restrictions 191
flexible access control 187
implementation choices 183
JTA, and 389
library development 181
maintenance phase 184
overcoming adaptation

resistance 200
overview 179–181
patterns 185–191
performance

implications 185
post-analysis 185
runtime enforcement

See runtime policy
enforcement 183

schematic 180
Swing 195
transaction management, use

in 373
using embedded code 181
warning vs. fixing 184

policy file
authorization, credential

check 337
example of 343

post-analysis
policy enforcement,

using 185

476 INDEX
precedence control 115
declare precedence,

using 115
precedence rules 114

advice 111
after advice 114
around advice 114
aspect 111
before advice 114
graphical 114
proceed() and 114

preinitialization pointcut 74
PreserveBusinessException

aspect 269
privileged

See privileged aspects 140
privileged aspects 59, 139

caution 141
incorrect usage 433
testing phase 431

PrivilegedAction
authorization, use of 337
conventional authorization,

example of 340
PrivilegedExceptionAction

authorization, use of 337
conventional authorization,

example of 340
proceed()

arguments to 85
authorization example 348
bypassing join point 85

example of 214
calling inside try block, exam-

ple of 267
example of 93, 214
if(false), and 279
resource pooling

example 209
return value of 85
taking argument, example

of 228
transaction management,

example of 370
use of 83
worker object, example

of 299, 305
product development

policy enforcement, and 184
profiling 175

conventional 175

gradual focusing 175
plug-and-play 175
use in dynamic

monitoring 176
programming

idioms 189
methodologies

current status 6
issues with current

techniques 6
practices

policy enforcement 179
tips

idioms 277
property-based pointcuts 68

participant pattern, and 270
protection against web site

attacks 324
putConnection() 212
putResource() 205
putThread() method 226

Q

QA
runtime policy enforcement,

and 184
using logging 174

queue
JMS 387

R

reader threads
read-write lock pattern,

and 316
read-write lock pattern 316

appropriate usage 316
AspectJ

implementation 318–
321

conventional implementation
316–318

conventional solution, inva-
siveness of 318

description 316
exception introduction pat-

tern, use of 320
participant pattern, and 321

ReadWriteLock, concurrency
utility library 317

realize
Swing application, meaning

of 295
ReentrantWriterPreference-

ReadWriteLock
concurrency utility

library 317
refactored code

core concern 429
refactoring 236, 426, 433

Aspectj, using
See aspectual

refactoring 431
base-derived aspect 298

refactoring aspect
code sharing 402

reflection API 101–111
class diagram 103
dynamic information 102
example of 106
Signature interface 104–105
SourceLocation interface 104
static information 102
static vs. dynamic

information 102
structural relationship 103
UML class diagram 103
using 106

reflective API
See reflection API 103
usage of 111

registerConnection() 212
regression testing

logging, and 174
release()

concurrency utility
library 317

Remote Method Invocation
(RMI) 137

RemoteException 137
repaint()

swing thread-safety, and 288
requirement changes

business rules 392
requirements

accommodating new 6
resource destruction

resource destruction join
point 227

resource pooling
advice 211

INDEX 477
architect’s dilemma, and 207
AspectJ-based

See aspect-oriented
resource pooling 208

caching, difference from 235
class diagram 205
conventional, code

snippet 206
database connection pooling

See database connection
pooling 211

definition of 203
deployment aspect, as 242
development aspect, as 242
interface 205
invasiveness 207
issues 206–208
JDBC 2.0, and 211
performance

finding bottlenecks 242
improvement 203

replacing
implementation 207

resource creation
pointcut 210

resource destruction
pointcut 211

role 205–206
sequence diagram 207, 210
switching on/off 207
transaction management,

and 369
turning off 223
typical resource usage

See typical resource
usage 203

resource pooling template
aspect 209

concern-weaving 210
creating concrete

implementation 208
database connection pooling,

mapping to 213
implementation 209
participating entities 208
participating join points 208
pointcuts 208
resource creation

pointcut 208
resource destruction

pointcut 208

thread pooling, mapping
to 227

ResourceDescription 205
ResourcePool 205
ResourcePoolingAspect 209
resource usage, typical 203–205
Rete algorithm

Jess, and 417
rule engine 412

Rete class
Jess 421

return value
worker object 296

return value management
worker object creation pat-

tern, example of 300
reusability

policy enforcement
aspects 184

reusable aspect
exception handling 261
read-write lock pattern 316,

318
reusable authorization

aspect 346
revalidate()

swing thread-safety, and 288
reversal of roles

participant pattern 273
RMI (Remote Method

Invocation) 137
roll back

database connection 366
rule engine 393

backward-reasoning
algorithm 412

basic facts 413
Blaze Advisor 417
business objects as facts 412
business rules, and 393
core business logic, embed-

ding into 394, 411
derived facts 413
evaluation 396
facts 412
graphical illustration

behavioral 414
structural 413

ILOG JRules 417
implementing business rules

using 411

initialization 396
Java objects, as facts 412
Jess 417
knowledge base 412
overview 412
Rete algorithm 412
rule invocation 420
RuleML 412
rules 412
sequence diagram 413–415
working memory 412

RuleML
business rules, and 393
rule engine 412

run() method
example of 224
Jess

running engine 422
Runnable

and worker object 247
Swing thread-safety, use

in 289
Swing, using in 197–198
thread pooling 227

RunnableWithReturn
transaction management,

example of 384
use of 253, 299
worker object creation

pattern 252
runtime policy violation

logging 183
RuntimeException 136, 261

S

SampleLoginModule 330
scattering of decisions

authorization example,
conventional 345

security API
J2SE 1.4 324

Security Assertion Markup
Language (SAML) 324

security concern 324
auditing 324
authentication 324
authorization 324
code scattering 325
code tangling 325
cryptography 324

478 INDEX
protection against web site
attacks 324

separation of concerns 429
database connection

pooling 211
design/implementation

mismatch 10
design phase 10
house-building analogy 4
light-beam/prism analogy 8
multidimensional space 8
mutual independence 9
one-dimensional

implementation 10
orthogonality 9
robotic system example 4
software system example 4
through modularization 20
transaction management,

example of 357
sequence diagram

control-flow 76
join points 81
per-control-flow

association 130
per-object association 127
resource usage 204, 207
rule engine, AspectJ-

based 416
server-side applications

thread pooling 223
servlet 334
servlet session 334
set pointcut

policy enforcement, use
in 195

setAutoCommit()
transaction management,

JDBC and 359
shopping cart

business rule, example of 392
shopping cart example 147
showMessageDialog()

Swing thread safety, example
of 290

Signature
example of 328, 332, 363

signature pattern 68
constructor

See constructor signature
pattern 70

field
See field signature 72

method
See method signature

pattern 70
syntax 68
type

See type signature 68
Signature.getDeclaringType()

example of 376
Signature.toShortString()

logging, example of 408
Simple Rule Markup Language

(SRML)
business rules, and 393

socket 224
creation of

EJB programming
restrictions 194

socket connections
resource pooling, and 204

softening
See exception softening 138

SoftException 138
SoftReference

caching example 241
software system

as concern composition 7
-source

ajc option 440
SourceLocation 105

example of 108
-sourceroots option, ajc 441

-injars and -outjar options,
combining 442

-injars option,
combining 442

space/time tradeoff 207
special pointcut syntax, captur-

ing no join points
example of 380

SQLException 265
standard Java logging kit 146
state

transaction management,
maintaining 369

stateless aspect
instances, and 382

static context 101
static crosscutting 34, 95

classifications of 95

definition of 34
dynamic crosscutting, com-

parison with 95
introducing compile-time

errors and warning
See introducing compile-

time errors and
warning 97

member introduction
See member

introduction 95
modifying class hierarchy

See modifying class
hierarchy 96

per-object association, rela-
tion with 125, 134

static fields
EJB programming

restrictions 191, 194
static methods

getTarget() 104
getThis() 104

statically determinable point-
cuts

compile-time declaration 183
compile-time

enforcement 183
staticinitialization pointcut

example of 107
store()

Jess, storing facts 422
strongly typed languages 183
stylesheet 235
subaspect 57–58

authentication 333
example of 58, 125, 171,

251, 263, 281, 299, 301,
304, 308–309, 315, 319

participant pattern, use
of 273–276

transaction management 374
Subject

authorization, use of 337
example usage 333

Subject.doAsPrivileged() 348
Swing

event-dispatching thread,
and 195, 287

policy enforcement 195
need of 313

realized, meaning of 288

INDEX 479
single-thread rule 287–290
violation, use case 288

single-threaded,
restriction 195

thread safety
AspectJ solution 297–311
asynchronous routing 291,

295
avoiding overhead 312
conventional solution 293–

297
dealing with

exceptions 311
exception introduction pat-

tern, use of 312
exception-handling

policy 296
exempted calls 300
hard-to-read code 290
issues using pattern 289
pattern 289
policy enforcement 287
return type consideration

303
return value

consideration 291,
295

solution 289
synchronous routing 291,

295
test problem 290
worker object creation

pattern 298
worker object, and 247

SwingThreadSafetyAspect 299
synchronous routing

non-void type 304
Swing thread safety, explicit

control 307
worker object creation

pattern 253
system evolution

authorization example,
conventional 345

System.err 163
policy enforcement 185

System.in access
EJB programming

restrictions 194
System.out 157

policy enforcement 185

T

-target
ajc option 440

target pointcut 78
context collection 87

example of 228, 363
example of 78, 121, 214, 220
reflection, and 101
static methods 78
use of wildcard 78

taskdef ant task
resource attribute

defining AspectJ tasks 448
TCP/IP 203

thread pooling example 224
Templates

stylesheet 239
test cases

creating using AspectJ 431
testing

logging, use of 174
using AspectJ 431

testing phase
error reporting 432

TextCallbackHandler 330
example usage 331

third-party aspects 117
third-party services

use of dynamic
monitoring 176

this
advice, inside 124

this pointcut 78
context collection 87

example of 228, 383, 402,
408

difference from call
pointcut 79

difference from within
pointcut 79

example of 78, 123
reflection, and 101
restricting matched type,

example of 403–404
static methods 78
use of wildcard 78

thisEnclosingJoinPointStatic-
Part 101–102

example of 103

thisJoinPoint 101–102, 105
example of 52
string representation 55
thisJoinPointStaticPart, com-

parison with 158
usage of 83, 102
use in logging 168

thisJoinPointStaticPart 101–
102, 105

as key in map 175
example of 123, 291, 328,

332, 343
logging, example of 363, 408
passing as method parameter,

example of 347
thisJoinPoint, comparison

with 158
usage of 102
use in exception logging 164
use in logging 158, 161

thread pool 230–231
implementation,

SimpleThreadPool 228,
230

ThreadPool interface 226
thread pooling

destruction join point, non-
obviousness 223

improving UI
responsiveness 315

thread pooling aspect 223–235
active resource

consideration 223
AspectJ-based

See aspect-oriented thread
pooling 226

aspect-oriented
See aspect-oriented thread

pooling 226
fine tuning 234
pool interface

See thread pool 226
resource creation join

point 227
resource pooling template,

mapping to 227
selective enabling 234

thread safety
definition of 287
patterns, for 287

480 INDEX
read-write lock pattern
See read-write lock

pattern 316
threading

EJB programming
restrictions 191

ThreadLocal 129, 257
logging, use in 173
transaction management, use

of 367
thread-local storage 129

call depth, storing of 367
logging, use in 173
transaction management, use

of 365
threads 226

resource pooling, and 204
resurrection 229
waiting state 229

thread-specific connection
transaction management,

and 367
time-consuming tasks

UI applications, issues
with 313

timestamp
use in profiling 175

top-level operation
commit/rollback

consideration 368
determination of 367
transaction management 368
worker method, as 382

tracing 156
indentation effect 53
method call

See method call
tracing 157

need for 156
See logging 107

training 436
policy enforcement,

using 184
transaction management aspect

exception handling, and 261
transaction management sub-

aspect, example of 373
Transaction Processing (TP)

monitor 387
transactions

ACID properties 357

atomicity property 357
consistency property 357
context 382

aspect instance, use of 369
connection creation,

avoiding 384
connection object, forming

of 368
connection storage 382

definition of 357
durability property 357
integrity 362

nested transactions 362
isolation property 357
management

communicating failure 369
conventional solution 364–

368
crosscutting concern,

as 357
declarative with

AspectJ 357
EJB, and 357
explicit awareness, core

concerns 368
inconsistent state 357
invasiveness 366
legacy system, and 373
multiple subaspects 379–

382
multiple subsystems 378–

387
property-based

pointcut 270
resource pooling, and 369
roles

storing connection
object 382

weaving commit and
rollback 382

thread-specific connection,
and 367

using per-control-flow
association 128

nested 361
state management 372

Transformer
multithreading issue 239
stylesheet 235, 237

TransformerFactory
stylesheet 235

try/catch
exception introduction pat-

tern, and 263, 265, 267
transaction management, use

in 369
type

definition of 68
type signature 68

example of 69
example use in method

signature 70
package declaration 69
subtype specification 68
usage in other signatures 69–

70
use of wildcard 68
using binary operator 69
using unary operator 69

type signature pattern
declare precedence, using

in 116
See type signature 68

U

UI applications
improving responsiveness

See improving UI
responsiveness 313

unary operator 67
type signature, and 69

unchecked exception 136
underdesign

benefits 6
underlying logic

exception, need to throw 261
up-front authentication

AspectJ-based, using 335
up-front login 329

protecting again unauthenti-
cated access 336

UserTransaction 389

V

visitor design pattern 246

W

wakeupThread() method 226
weaver 22, 24

INDEX 481
definition of 24
patching, difference from 30
using byte-code

transformation 25
using source-to-source

translation 24
weaving 4, 24

abstract aspect 57
AspectJ compiler 59
behavior modification 34
comparison with event-based

programming 24
definition of 24
dynamic 25
examples of

pseudo code 26
rules 26
woven code 27

example output 42
into JAR files

iajc ant task, using 451
See -injars option, ajc 442

just-in-time 25, 60
logging example 156
once-only restriction, ajc 443
process overview 25
resource pooling

example 210
rules

definition of 23
economical expression 23
expression language 24
role in crosscutting 33
specificity 23

static modifications 34
what-if scenario

nullifying advice 279
wildcards

* 67
+ 67
.. 67
consistent naming

convention 429
declare precedence, using

in 116
need for 67
use in a type signature 68

within pointcut 77
avoiding infinite recursion 53,

108, 158, 164
idiom 278

difference from this
pointcut 79

example of 52, 77, 107, 159,
312

limiting impact 427
limiting scope 186

exception softening, exam-
ple of 361

resource pooling
example 222

restricting scope, example
of 299

usage of 77
use in access control 187

withincode pointcut 77
example of 77, 159, 189, 312

worker method 247
worker object

anonymous class 248
as context 254
current solution 248

drawbacks 249
definition of 247
direct invocation 254
example of 299
named class 248
return value 252

Swing, example of 296
run() method, and 248
Runnable, relation to 247

worker object creation
pattern 247–256

around advice 249
authorization example 346
authorization, advantages of

using 346
context collection 249
example of 250
getting return value 252
improving UI

responsiveness 313–314
managing collected

context 256
overview 249
passing worker to thread 251
proceed() 249

context management,
and 256

return value, and 252
use of 251

return value management,
example of 300

routing methods with return
value 252

RunnableWithReturn 252
Swing thread safety 287, 298
synchronous routing 253
template 249
transaction context, and 382,

385
transaction management,

example of 378, 382
worker method, and 247

working memory
AspectJ-based rule implemen-

tation
context collection 416
setting of 416

rule engine 412
wormhole pattern 256–260,

384
business rule implementa-

tion, example of 405
call stack 258
callee pointcut 257
caller pointcut 257
caller type 260
current solutions 257
detecting caller type, example

of 405
example of 258
graphical illustration 257
implicit context 260
overview 257
passing context 257
pattern template 258
purpose 256

writer threads
read-write lock pattern,

and 316

X

-Xlint option, ajc 446
modifying ajc shell script 446
modifying ajc.bat 446

-XnoWeave option, ajc 444
XP 431

AspectJ, using 431
relation to AOP 28

XSLT 235

	AspectJ in Action
	preface
	how real is AspectJ?
	into the future!
	acknowledgments
	about this book
	Roadmap
	Packages and tools used
	Source code
	Typographical conventions
	Author Online
	About the author
	About the title
	About the cover

	Part 1 - Understanding AOP and AspectJ
	Chapter 1. Introduction to AOP
	1.1 The architect’s dilemma
	1.2 Evolution of programming methodologies
	1.3 Managing system concerns
	1.3.1 Identifying system concerns
	1.3.2 A one-dimensional solution
	1.3.3 It’s all about modularizing

	1.4 Implementing crosscutting concerns in nonmodularized systems
	1.4.1 Symptoms of nonmodularization
	1.4.2 Implications of nonmodularization

	1.5 Introducing AOP
	1.5.1 A bit of history
	1.5.2 The AOP methodology

	1.6 Anatomy of an AOP language
	1.6.1 The AOP language specification
	1.6.2 The AOP language implementation
	1.6.3 A weaving example

	1.7 Benefits of AOP
	1.8 Myths and realities of AOP
	1.9 Summary

	Chapter 2. Introducing AspectJ
	2.1 AspectJ: a bird’s eye view
	2.1.1 Crosscutting in AspectJ
	2.1.2 Crosscutting elements

	2.2 AspectJ Hello World
	2.3 AspectJ: under the hood
	2.4 The join point model
	2.4.1 Exposed join point categories
	2.4.2 Join point demonstration example

	2.5 Aspects
	2.6 AspectJ logistics overview
	2.6.1 The AspectJ compiler
	2.6.2 AspectJ browser
	2.6.3 IDE integration

	2.7 Summary

	Chapter 3. AspectJ: syntax basics
	3.1 Pointcuts
	3.1.1 Wildcards and pointcut operators
	3.1.2 Signature syntax
	3.1.3 Implementing pointcuts

	3.2 Advice
	3.2.1 Anatomy of advice
	3.2.2 The before advice
	3.2.3 The after advice
	3.2.4 The around advice
	3.2.5 Comparing advice with methods
	3.2.6 Passing context from a join point to advice
	3.2.7 Returning a value from around advice
	3.2.8 An example using around advice: failure handling
	3.2.9 Context collection example: caching

	3.3 Static crosscutting
	3.3.1 Member introduction
	3.3.2 Modifying the class hierarchy
	3.3.3 Introducing compile-time errors and warning

	3.4 Tips and tricks
	3.5 Summary

	Chapter 4. Advanced AspectJ
	4.1 Accessing join point information via reflection
	4.1.1 The reflective API
	4.1.2 Using reflective APIs

	4.2 Aspect precedence
	4.2.1 Ordering of advice
	4.2.2 Explicit aspect precedence
	4.2.3 Aspect inheritance and precedence
	4.2.4 Ordering of advice in a single aspect
	4.2.5 Aspect precedence and member introduction

	4.3 Aspect association
	4.3.1 Default association
	4.3.2 Per-object association
	4.3.3 Per-control-flow association
	4.3.4 Implicit limiting of join points
	4.3.5 Comparing object association with member introduction
	4.3.6 Accessing aspect instances

	4.4 Exception softening
	4.5 Privileged aspects
	4.6 Summary

	Part 2 - Basic applications of AspectJ
	Chapter 5. Monitoring techniques: logging, tracing, and profiling
	5.1 Why use AspectJ for logging?
	5.1.1 A simple case in point
	5.1.2 Logging the conventional way
	5.1.3 Logging the aspect-oriented way

	5.2 What’s wrong with conventional logging
	5.3 The beauty of AspectJ-based logging
	5.4 Developing logging and tracing aspects
	5.4.1 Method call tracing
	5.4.2 Exceptions logging

	5.5 Common logging idioms
	5.5.1 Logging the method parameters
	5.5.2 Indenting the log statements
	5.5.3 Aspect precedence
	5.5.4 Changing the underlying logging mechanism
	5.5.5 Using logging in a multithreaded environment

	5.6 Extending logging for other usage
	5.6.1 Testing
	5.6.2 Profiling

	5.7 Summary

	Chapter 6. Policy enforcement: system wide contracts
	6.1 AspectJ-based policy enforcement overview
	6.2 The current solution and its challenges
	6.3 Enforcement using AspectJ
	6.3.1 Policy enforcement implementation choices
	6.3.2 The role of policy enforcement during the product lifecycle

	6.4 Policy enforcement patterns
	6.4.1 Detecting the violation of a specific call pattern
	6.4.2 Implementing flexible access control
	6.4.3 Enforcing the best-practices principles

	6.5 Example: implementing EJB programming restrictions
	6.5.1 Implementing “no AWT”
	6.5.2 Implementing “no nonfinal static field access”

	6.6 Example: implementing Swing policies
	6.6.1 Understanding the problem
	6.6.2 Detecting the violation

	6.7 Summary

	Chapter 7. Optimization: pooling and caching
	7.1 The typical case
	7.1.1 Return, reuse, recycle: The role of resource pooling
	7.1.2 Resource pooling issues

	7.2 Diving into the pool using AspectJ
	7.2.1 Designing a template aspect
	7.2.2 Implementing the template aspect

	7.3 Example 1: database connection pooling
	7.3.1 Understanding the database connection pool interface
	7.3.2 AspectJ-based database connection pooling
	7.3.3 Implementing the connection pool
	7.3.4 Testing our solution
	7.3.5 Tweaking the solution

	7.4 Example 2: thread pooling
	7.4.1 The echo server
	7.4.2 Understanding the thread pool interface
	7.4.3 AspectJ-based thread pooling
	7.4.4 Implementing the thread pool
	7.4.5 Testing our solution
	7.4.6 Tweaking the solution

	7.5 Extending pooling concepts to caching
	7.5.1 AspectJ-based caching: the first version
	7.5.2 AspectJ-based caching: the second version
	7.5.3 Ideas for further improvements

	7.6 Summary

	Part 3 - Advanced applications of AspectJ
	Chapter 8. Design patterns and idioms
	8.1 The worker object creation pattern
	8.1.1 The current solution
	8.1.2 An overview of the worker object creation pattern
	8.1.3 The pattern template
	8.1.4 A summary of the worker object creation pattern

	8.2 The wormhole pattern
	8.2.1 The current solution
	8.2.2 An overview of the wormhole pattern
	8.2.3 The pattern template
	8.2.4 A summary of the wormhole pattern

	8.3 The exception introduction pattern
	8.3.1 The current solution
	8.3.2 An overview of the exception introduction pattern
	8.3.3 The pattern template
	8.3.4 A summary of the exception introduction pattern

	8.4 The participant pattern
	8.4.1 Current solutions
	8.4.2 An overview of the participant pattern
	8.4.3 The pattern template
	8.4.4 A summary of the participant pattern

	8.5 Idioms
	8.5.1 Avoiding infinite recursion
	8.5.2 Nullifying advice
	8.5.3 Providing empty pointcut definitions
	8.5.4 Providing a default interface implementation

	8.6 Summary

	Chapter 9. Implementing thread safety
	9.1 Swing’s single-thread rule
	9.1.1 The rule
	9.1.2 The problem
	9.1.3 The solution

	9.2 A test problem
	9.3 Solution: the conventional way
	9.4 Solution: the AspectJ way
	9.4.1 The first version
	9.4.2 The second version
	9.4.3 The third version

	9.5 Improving the solution
	9.5.1 Dealing with exceptions
	9.5.2 Avoiding the overhead

	9.6 Improving the responsiveness of UI applications
	9.7 Modularizing the read-write lock pattern
	9.7.1 Implementation: the conventional way
	9.7.2 Implementation: the AspectJ way

	9.8 Summary

	Chapter 10. Authentication and authorization
	10.1 Problem overview
	10.2 A simple banking example
	10.3 Authentication: the conventional way
	10.3.1 Implementing the solution
	10.3.2 Testing the solution

	10.4 Authentication: the AspectJ way
	10.4.1 Developing the solution
	10.4.2 Testing the solution

	10.5 Authorization: the conventional way
	10.5.1 Understanding JAAS-based authorization
	10.5.2 Developing the solution
	10.5.3 Testing the solution
	10.5.4 Issues with the conventional solution

	10.6 Authorization: the AspectJ way
	10.6.1 Developing the solution
	10.6.2 Testing the solution

	10.7 Fine-tuning the solution
	10.7.1 Using multiple subaspects
	10.7.2 Separating authentication and authorization

	10.8 Summary

	Chapter 11. Transaction management
	11.1 Example: a banking system with persistence
	11.1.1 Implementing the core concern
	11.1.2 Setting up the test scenario

	11.2 The conventional solution
	11.2.1 Using the same connection object
	11.2.2 Committing at the top level only

	11.3 Developing a simple AspectJ-based solution
	11.3.1 Implementing the JDBC transaction aspect
	11.3.2 Handling legacy system issues
	11.3.3 Enabling transaction management for the banking system
	11.3.4 Testing the solution

	11.4 Improving the solution
	11.4.1 Using the participant pattern
	11.4.2 Implementing the JDBC transaction aspect: the second version
	11.4.3 Testing the solution

	11.5 Using AspectJ with advanced transaction- management systems
	11.6 Summary

	Chapter 12. Implementing business rules
	12.1 Using business rules in enterprise applications
	12.2 An overview of business rule implementation
	12.3 Current mechanisms
	12.4 Introducing a solution using AspectJ
	12.4.1 The template

	12.5 Example: the banking system
	12.5.1 Implementing the core business logic
	12.5.2 Implementing the first business rule
	12.5.3 Implementing the second business rule
	12.5.4 Writing a test program

	12.6 Implementing business rules with a rule engine
	12.6.1 An overview of the rule engine
	12.6.2 Using a rule engine
	12.6.3 Modularizing with AspectJ

	12.7 Example: a banking system with a rule engine
	12.7.1 A brief overview of Jess (Java Expert System Shell)
	12.7.2 Specifying rules
	12.7.3 Understanding the rule invocation aspect

	12.8 Summary

	Chapter 13. The next step
	13.1 Applying AspectJ to new problems
	13.1.1 Talking the talk
	13.1.2 Walking the walk

	13.2 Employing AspectJ in development phases
	13.2.1 AspectJ in the design phase
	13.2.2 AspectJ in the implementation phase
	13.2.3 AspectJ in the testing phase
	13.2.4 AspectJ in the maintenance phase
	13.2.5 AspectJ in legacy projects

	13.3 A word of warning
	13.4 Evangelizing AspectJ
	13.5 Parting thoughts

	Appendix A. The AspectJ compiler
	A.1 Downloading and setting up
	A.2 An overview of the compiler
	A.3 Compiling source files
	A.4 Compiling source directories
	A.5 Weaving into JAR files
	A.6 Creating aspect libraries
	A.7 Using aspect libraries
	A.8 Utilizing incremental compilation mode
	A.9 Producing useful warnings

	Appendix B. Understanding Ant integration
	B.1 Compiling source files using an Ant task
	B.2 Weaving into JAR files using an Ant task
	B.3 Creating aspect libraries using an Ant task
	B.4 Utilizing aspect libraries using an Ant task
	B.5 Utilizing incremental compilation using an Ant task

	resources
	Recommended reading
	Books
	Journal articles
	Online resources

	Useful web sites
	AOP and related methodology
	Libraries and tools you need to complete examples in the book
	Other AOP implementations
	IDE integration of AspectJ
	AOP/AspectJ tools and packages
	Miscellaneous sites
	Mailing lists

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

